Tuesday, October 4, 2022
HomeNatureA mobile hierarchy in melanoma uncouples development and metastasis

A mobile hierarchy in melanoma uncouples development and metastasis


  • Rambow, F., Marine, J. C. & Goding, C. R. Melanoma plasticity and phenotypic range: therapeutic limitations and alternatives. Genes Dev. 33, 1295–1318 (2019).

  • Arozarena, I. & Wellbrock, C. Phenotype plasticity as enabler of melanoma development and remedy resistance. Nat. Rev. Most cancers 19, 377–391 (2019).

  • Gulati, G. S. et al. Single-cell transcriptional range is a trademark of developmental potential. Science 367, 405–411 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rambow, F. et al. Towards minimal residual disease-directed remedy in melanoma. Cell 174, 843–855 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wouters, J. et al. Strong gene expression packages underlie recurrent cell states and phenotype switching in melanoma. Nat. Cell Biol. 22, 986–998 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patton, E. E. et al. Melanoma fashions for the following era of therapies. Most cancers Cell 39, 610–631 (2021).

  • Ackermann, J. et al. Metastasizing melanoma formation brought on by expression of activated N-RasQ61K on an INK4a-deficient background. Most cancers Res. 65, 4005–4011 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Serrano, M. et al. Function of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jerby-Arnon, L. et al. A most cancers cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rambow, F. et al. New purposeful signatures for understanding melanoma biology from tumor cell lineage-specific evaluation. Cell Rep. 13, 840–853 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sade-Feldman, M. et al. Defining T cell states related to response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fan, J. et al. Linking transcriptional and genetic tumor heterogeneity by allele evaluation of single-cell RNA-seq knowledge. Genome Analysis 28, 1217–1227 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goding, C. R. & Arnheiter, H. MITF—the primary 25 years. Genes Dev. 33, 983–1007 (2019).

  • Hoek, Okay. S. & Goding, C. R. Most cancers stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res. 23, 746–759 (2010).

  • Aibar, S. et al. SCENIC: single-cell regulatory community inference and clustering. Nat. Strategies 14, 1083–1086 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Soldatov, R. et al. Spatiotemporal construction of cell destiny choices in murine neural crest. Science 364, eaas9536 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kerosuo, L. & Bronner, M. E. cMyc regulates the dimensions of the premigratory neural crest stem cell pool. Cell Rep. 17, 2648–2659 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Most cancers Cell 33, 890–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Köhler, C. et al. Mouse cutaneous melanoma induced by mutant BRaf arises from enlargement and dedifferentiation of mature pigmented melanocytes. Cell Stem Cell 21, 679–693 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Pozniak, J. et al. A TCF4/BRD4-dependent regulatory community confers cross-resistance to focused and immune checkpoint remedy in melanoma. Preprint at bioRxiv https://doi.org/10.1101/2022.08.11.502598 (2022).

  • Snippert, H. J. et al. Intestinal crypt homeostasis outcomes from impartial competitors between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reeves, M. Q., Kandyba, E., Harris, S., Del Rosario, R. & Balmain, A. Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20, 699–709 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stuart, T. et al. Complete integration of single-cell knowledge. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis utilizing DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Calabrese, C. et al. A perivascular area of interest for mind tumor stem cells. Most cancers Cell 11, 69–82 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to focus on genes. Nat. Strategies 17, 159–162 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jin, S. et al. Inference and evaluation of cell-cell communication utilizing CellChat. Nat. Commun. 12, 1088 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based strategy for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei, Okay. et al. Notch signalling drives synovial fibroblast id and arthritis pathology. Nature 582, 259–264 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takano, S. et al. Prrx1 isoform switching regulates pancreatic most cancers invasion and metastatic colonization. Genes Dev. 30, 233–247 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ocaña, O. H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Most cancers Cell 22, 709–724 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hoek, Okay. S. et al. In vivo switching of human melanoma cells between proliferative and invasive states. Most cancers Res. 68, 650–656 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verfaillie, A. et al. Decoding the regulatory panorama of melanoma reveals TEADS as regulators of the invasive cell state. Nat. Commun. https://doi.org/10.1038/ncomms7683 (2015).

  • Widmer, D. S. et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res. 25, 343–353 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kawanami, A., Matsushita, T., Chan, Y. Y. & Murakami, S. Mice expressing GFP and CreER in osteochondro progenitor cells within the periosteum. Biochem. Biophys. Res. Commun. 386, 477–482 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boiko, A. D. et al. Human melanoma-initiating cells categorical neural crest nerve development issue receptor CD271. Nature 466, 133–137 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roesch, A. et al. A quickly distinct subpopulation of slow-cycling melanoma cells is required for steady tumor development. Cell 141, 583–594 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quintana, E. et al. Environment friendly tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stemmler, M. P., Eccles, R. L., Brabletz, S. & Brabletz, T. Non-redundant capabilities of EMT transcription components. Nat. Cell Biol. 21, 102–112 (2019).

  • Bosenberg, M. et al. Characterization of melanocyte-specific inducible Cre recombinase transgenic mice. Genesis 44, 262–267 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krimpenfort, P., Quon, Okay. C., Mooi, W. J., Loonstra, A. & Berns, A. Lack of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maria Bosisio, F. et al. Practical heterogeneity of lymphocytic patterns in major melanoma dissected by single-cell multiplexing. eLife https://doi.org/10.7554/eLife.53008 (2020).

  • Susaki, E. A. et al. Complete-brain imaging with single-cell decision utilizing chemical cocktails and computational evaluation. Cell 157, 726–739 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marçais, G. & Kingsford, C. A quick, lock-free strategy for environment friendly parallel counting of occurrences of ok-mers. Bioinformatics 27, 764–770 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gans, J. D. & Wolinsky, M. Improved assay-dependent looking of nucleic acid sequence databases. Nucleic Acids Res. 36, e74 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rodriguez, J. M. et al. APPRIS 2017: principal isoforms for a number of gene units. Nucleic Acids Res. 46, D213–D217 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bankhead, P. et al. QuPath: open supply software program for digital pathology picture evaluation. Sci. Rep. 7, 16878 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. In Proc. Medical Picture Computing and Pc Assisted Intervention—MICCAI 2018 (eds Frangi, A. et al.) Vol. 11071, 265–273 (Springer, 2018).

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing knowledge utilizing synthetic nearest neighbors. Cell Syst. 8, 329–337 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Korsunsky, I. et al. Quick, delicate and correct integration of single-cell knowledge with Concord. Nat. Strategies 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rousseeuw, P. J. Silhouettes: a graphical assist to the interpretation and validation of cluster evaluation. J. Comput. Appl. Math. 20, 53–65 (1987).

    MATH 
    Article 

    Google Scholar
     

  • Oren, Y. et al. Biking most cancers persister cells come up from lineages with distinct packages. Nature 596, 576–582 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guzmán, C., Bagga, M., Kaur, A., Westermarck, J. & Abankwa, D. ColonyArea: an ImageJ plugin to mechanically quantify colony formation in clonogenic assays. PLoS ONE 9, e92444 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Khurram Shehzad on No Confidence Last Round
    Asif Baloch on Update No.3
    Khurram on Update No.2
    Mehjabeen asif on Update On Pakistan Iran Border
    Asim Meraj on WhatsApp