Monday, December 4, 2023
HomeNatureA spatiotemporally resolved single-cell atlas of the Plasmodium liver stage

A spatiotemporally resolved single-cell atlas of the Plasmodium liver stage

[ad_1]

  • Despommier, D. D. et al. Parasitic Illnesses sixth edn (Parasites With out Borders, 2017).

  • Vaughan, A. M. & Kappe, S. H. I. Malaria parasite liver an infection and exoerythrocytic biology. Chilly Spring Harb. Perspect. Med. 7, a025486 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity within the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell varieties. Science 343, 776–779 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahar Halpern, Ok. et al. Bursty gene expression within the intact mammalian liver. Mol. Cell 58, 147–156 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nyboer, B., Heiss, Ok., Mueller, A.-Ok. & Ingmundson, A. The Plasmodium liver-stage parasitophorous vacuole: a front-line of communication between parasite and host. Int. J. Med. Microbiol. 308, 107–117 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graewe, S. et al. Hostile takeover by plasmodium: reorganization of parasite and host cell membranes throughout liver stage egress. PLoS Pathog. 7, e1002224 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halpern, Ok. B. et al. Single-cell spatial reconstruction reveals international division of labour within the mammalian liver. Nature 542, 352–356 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, S. et al. Hypoxia promotes liver-stage malaria an infection in major human hepatocytes in vitro. Dis. Mannequin. Mech. 7, 215–224 (2014).

    PubMed 

    Google Scholar
     

  • Yang, A. S. P. et al. Zonal human hepatocytes are differentially permissive to Plasmodium falciparum malaria parasites. EMBO J. 40, e106583 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albuquerque, S. S. et al. Host cell transcriptional profiling throughout malaria liver stage an infection reveals a coordinated and sequential set of organic occasions. BMC Genomics 10, 270 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toro-Moreno, M., Sylvester, Ok., Srivastava, T., Posfai, D. & Derbyshire, E. R. RNA-seq evaluation illuminates the early levels of Plasmodium liver an infection. mBio 11, e03234–19 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howick, V. M. et al. The malaria cell atlas: single parasite transcriptomes throughout the entire Plasmodium life cycle. Science 365, eaaw2619 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franke-Fayard, B. et al. A Plasmodium berghei reference line that constitutively expresses GFP at a excessive degree all through the entire life cycle. Mol. Biochem. Parasitol. 137, 23–33 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halpern, Ok. B. et al. Paired-cell sequencing allows spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36, 962–970 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liehl, P. et al. Host-cell sensors for Plasmodium activate innate immunity towards liver-stage an infection. Nat. Med. 20, 47–53 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Strategies 14, 935–936 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Spottiswoode, N., Duffy, P. E. & Drakesmith, H. Iron, anemia and hepcidin in malaria. Entrance. Pharmacol. 5, 125 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, M. et al. The fatty acid biosynthesis enzyme FabI performs a key function within the growth of liver-stage malarial parasites. Cell Host Microbe 4, 567–578 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaughan, A. M. et al. Kind II fatty acid synthesis is crucial just for malaria parasite late liver stage growth. Cell. Microbiol. 11, 506–520 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves complicated single-cell trajectories. Nat. Strategies 14, 979–982 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J. et al. The one-cell transcriptional panorama of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogale, H. N. et al. Transcriptional heterogeneity and tightly regulated adjustments in gene expression throughout Plasmodium berghei sporozoite growth. Proc. Natl Acad. Sci. USA 118, e2023438118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Actual, E. et al. A single-cell atlas of Plasmodium falciparum transmission via the mosquito. Nat. Commun. 12, 3196 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikolajczak, S. A., Jacobs-Lorena, V., MacKellar, D. C., Camargo, N. & Kappe, S. H. I. L-FABP is a crucial host issue for profitable malaria liver stage growth. Int. J. Parasitol. 37, 483–489 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soga, A., Shirozu, T. & Fukumoto, S. Glyoxalase pathway is required for regular liver-stage proliferation of Plasmodium berghei. Biochem. Biophys. Res. Commun. 549, 61–66 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kehr, S., Sturm, N., Rahlfs, S., Przyborski, J. M. & Becker, Ok. Compartmentation of redox metabolism in malaria parasites. PLoS Pathog. 6, e1001242 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. The glycosylphosphatidylinositol transamidase complicated subunit PbGPI16 of Plasmodium berghei is essential for inducing experimental cerebral malaria. Infect. Immun. 86, e00929–17 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fougère, A. et al. Variant exported blood-stage proteins encoded by Plasmodium multigene households are expressed in liver levels the place they’re exported into the parasitophorous vacuole. PLoS Pathog. 12, e1005917 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, J. L., Sack, B. Ok., Baldwin, M., Vaughan, A. M. & Kappe, S. H. I. Interferon-mediated innate immune responses towards malaria parasite liver levels. Cell Rep. 7, 436–447 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribot, J. C. et al. γδ-T cells promote IFN-γ–dependent Plasmodium pathogenesis upon liver-stage an infection. Proc. Natl Acad. Sci. USA 116, 9979–9988 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giladi, A. et al. Dissecting mobile crosstalk by sequencing bodily interacting cells. Nat. Biotechnol. 38, 629–637 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaushansky, A. et al. Suppression of host p53 Is crucial for Plasmodium liver-stage an infection. Cell Rep. 3, 630–637 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolodziejczyk, A. A. et al. Acute liver failure is regulated by MYC- and microbiome-dependent packages. Nat. Med. 26, 1899–1911 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caldelari, R. et al. Transcriptome evaluation of Plasmodium berghei throughout exo-erythrocytic growth. Malar. J. 18, 330 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. zUMIs—a quick and versatile pipeline to course of RNA sequencing information with UMIs. Gigascience 7, giy059 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Droin, C. et al. House–time logic of liver gene expression at sub-lobular scale. Nat. Metab. 3, 43–58 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Built-in evaluation of multimodal single-cell information. Cell 184, 3573–3587.e29 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devroye, L. in Handbooks in Operations Analysis and Administration Science, Vol. 13 (eds Henderson, S. G. & Nelson, B. L.) Ch. 4 (Elsevier, 2006).

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for deciphering genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyubimova, A. et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc. 8, 1743–1758 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments