[ad_1]
Despommier, D. D. et al. Parasitic Illnesses sixth edn (Parasites With out Borders, 2017).
Vaughan, A. M. & Kappe, S. H. I. Malaria parasite liver an infection and exoerythrocytic biology. Chilly Spring Harb. Perspect. Med. 7, a025486 (2017).
Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity within the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 (2019).
Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell varieties. Science 343, 776–779 (2014).
Bahar Halpern, Ok. et al. Bursty gene expression within the intact mammalian liver. Mol. Cell 58, 147–156 (2015).
Nyboer, B., Heiss, Ok., Mueller, A.-Ok. & Ingmundson, A. The Plasmodium liver-stage parasitophorous vacuole: a front-line of communication between parasite and host. Int. J. Med. Microbiol. 308, 107–117 (2018).
Graewe, S. et al. Hostile takeover by plasmodium: reorganization of parasite and host cell membranes throughout liver stage egress. PLoS Pathog. 7, e1002224 (2011).
Halpern, Ok. B. et al. Single-cell spatial reconstruction reveals international division of labour within the mammalian liver. Nature 542, 352–356 (2017).
Ng, S. et al. Hypoxia promotes liver-stage malaria an infection in major human hepatocytes in vitro. Dis. Mannequin. Mech. 7, 215–224 (2014).
Yang, A. S. P. et al. Zonal human hepatocytes are differentially permissive to Plasmodium falciparum malaria parasites. EMBO J. 40, e106583 (2021).
Albuquerque, S. S. et al. Host cell transcriptional profiling throughout malaria liver stage an infection reveals a coordinated and sequential set of organic occasions. BMC Genomics 10, 270 (2009).
Toro-Moreno, M., Sylvester, Ok., Srivastava, T., Posfai, D. & Derbyshire, E. R. RNA-seq evaluation illuminates the early levels of Plasmodium liver an infection. mBio 11, e03234–19 (2020).
Howick, V. M. et al. The malaria cell atlas: single parasite transcriptomes throughout the entire Plasmodium life cycle. Science 365, eaaw2619 (2019).
Franke-Fayard, B. et al. A Plasmodium berghei reference line that constitutively expresses GFP at a excessive degree all through the entire life cycle. Mol. Biochem. Parasitol. 137, 23–33 (2004).
Halpern, Ok. B. et al. Paired-cell sequencing allows spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36, 962–970 (2018).
Liehl, P. et al. Host-cell sensors for Plasmodium activate innate immunity towards liver-stage an infection. Nat. Med. 20, 47–53 (2014).
van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Strategies 14, 935–936 (2017).
Spottiswoode, N., Duffy, P. E. & Drakesmith, H. Iron, anemia and hepcidin in malaria. Entrance. Pharmacol. 5, 125 (2014).
Yu, M. et al. The fatty acid biosynthesis enzyme FabI performs a key function within the growth of liver-stage malarial parasites. Cell Host Microbe 4, 567–578 (2008).
Vaughan, A. M. et al. Kind II fatty acid synthesis is crucial just for malaria parasite late liver stage growth. Cell. Microbiol. 11, 506–520 (2009).
Qiu, X. et al. Reversed graph embedding resolves complicated single-cell trajectories. Nat. Strategies 14, 979–982 (2017).
Cao, J. et al. The one-cell transcriptional panorama of mammalian organogenesis. Nature 566, 496–502 (2019).
Bogale, H. N. et al. Transcriptional heterogeneity and tightly regulated adjustments in gene expression throughout Plasmodium berghei sporozoite growth. Proc. Natl Acad. Sci. USA 118, e2023438118 (2021).
Actual, E. et al. A single-cell atlas of Plasmodium falciparum transmission via the mosquito. Nat. Commun. 12, 3196 (2021).
Mikolajczak, S. A., Jacobs-Lorena, V., MacKellar, D. C., Camargo, N. & Kappe, S. H. I. L-FABP is a crucial host issue for profitable malaria liver stage growth. Int. J. Parasitol. 37, 483–489 (2007).
Soga, A., Shirozu, T. & Fukumoto, S. Glyoxalase pathway is required for regular liver-stage proliferation of Plasmodium berghei. Biochem. Biophys. Res. Commun. 549, 61–66 (2021).
Kehr, S., Sturm, N., Rahlfs, S., Przyborski, J. M. & Becker, Ok. Compartmentation of redox metabolism in malaria parasites. PLoS Pathog. 6, e1001242 (2010).
Liu, Q. et al. The glycosylphosphatidylinositol transamidase complicated subunit PbGPI16 of Plasmodium berghei is essential for inducing experimental cerebral malaria. Infect. Immun. 86, e00929–17 (2018).
Fougère, A. et al. Variant exported blood-stage proteins encoded by Plasmodium multigene households are expressed in liver levels the place they’re exported into the parasitophorous vacuole. PLoS Pathog. 12, e1005917 (2016).
Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).
Miller, J. L., Sack, B. Ok., Baldwin, M., Vaughan, A. M. & Kappe, S. H. I. Interferon-mediated innate immune responses towards malaria parasite liver levels. Cell Rep. 7, 436–447 (2014).
Ribot, J. C. et al. γδ-T cells promote IFN-γ–dependent Plasmodium pathogenesis upon liver-stage an infection. Proc. Natl Acad. Sci. USA 116, 9979–9988 (2019).
Giladi, A. et al. Dissecting mobile crosstalk by sequencing bodily interacting cells. Nat. Biotechnol. 38, 629–637 (2020).
Kaushansky, A. et al. Suppression of host p53 Is crucial for Plasmodium liver-stage an infection. Cell Rep. 3, 630–637 (2013).
Kolodziejczyk, A. A. et al. Acute liver failure is regulated by MYC- and microbiome-dependent packages. Nat. Med. 26, 1899–1911 (2020).
Caldelari, R. et al. Transcriptome evaluation of Plasmodium berghei throughout exo-erythrocytic growth. Malar. J. 18, 330 (2019).
Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. zUMIs—a quick and versatile pipeline to course of RNA sequencing information with UMIs. Gigascience 7, giy059 (2018).
Droin, C. et al. House–time logic of liver gene expression at sub-lobular scale. Nat. Metab. 3, 43–58 (2021).
Hao, Y. et al. Built-in evaluation of multimodal single-cell information. Cell 184, 3573–3587.e29 (2021).
Devroye, L. in Handbooks in Operations Analysis and Administration Science, Vol. 13 (eds Henderson, S. G. & Nelson, B. L.) Ch. 4 (Elsevier, 2006).
Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for deciphering genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Lyubimova, A. et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc. 8, 1743–1758 (2013).
[ad_2]