Monday, December 4, 2023
HomeNatureAnomalous slip in body-centred cubic metals

Anomalous slip in body-centred cubic metals

[ad_1]

  • Christian, J. W. Some shocking options of the plastic deformation of body-centred cubic metals and alloys. Metall. Trans. 14A, 1237–1256 (1983).

    CAS 

    Google Scholar
     

  • Taylor, G. Thermally-activated deformation of BCC metals and alloys. Prog. Mater Sci. 36, 29–61 (1992).

    CAS 

    Google Scholar
     

  • Bulatov, V. V. et al. Dislocation multi-junctions and pressure hardening. Nature 440, 1174–1178 (2006).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kaun, L., Luft, A., Richter, J. & Schulze, D. Slip line patterns and lively slip methods of tungsten and molybdenum single crystals weakly deformed in stress at room temperature. Phys. Stat. Sol. 26, 485–499 (1968).

    CAS 
    ADS 

    Google Scholar
     

  • Marichal, C. et al. Origin of anomalous slip in tungsten. Phys. Rev. Lett. 113, 025501 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Duesbery, M. S. & Foxall, R. A. An in depth research of the deformation of excessive purity niobium single crystals. Philos. Magazine. 20, 719–751 (1969).

    CAS 
    ADS 

    Google Scholar
     

  • Reed, R. E. & Arsenault, R. J. Additional observations of anomalous slip in niobium single crystals. Scr. Steel. 10, 1003–1006 (1976).

    CAS 

    Google Scholar
     

  • Wooden, M. I. & Taylor, G. Niobium – an athermal plateau within the low-temperature yield stress. Philos. Magazine. A 56, 329–342 (1987).

    CAS 
    ADS 

    Google Scholar
     

  • Matsui, H. & Kimura, H. Feedback on “Anomalous slip in a BCC crystal noticed in laptop simulation of screw dislocation movement”. Scr. Metall. 8, 1205–1207 (1974).


    Google Scholar
     

  • Vitek, V. & Taylor, G. Touch upon “Anomalous slip in BCC crystals noticed in laptop simulation of screw dislocation movement”. Scr. Metall. 8, 1283–1285 (1974).


    Google Scholar
     

  • Saka, H., Noda, Ok., Imura, T., Matsui, H. & Kimura, H. HVEM in-situ remark of anomalous (101) slip in molybdenum. Philos. Magazine. 34, 33–48 (1976).

    CAS 
    ADS 

    Google Scholar
     

  • Matsui, H. & Kimura, H. Anomalous {110} slip in high-purity molybdenum single crystals and its comparability with that in V(a) metals. Mater. Sci. Eng. 24, 247–256 (1976).

    CAS 

    Google Scholar
     

  • Wasserbäch, W. Anomalous slip in high-purity niobium and tantalum single crystals. Phys. Stat. Sol. a 147, 417–446 (1995).

    ADS 

    Google Scholar
     

  • Louchet, F. & Kubin, L. P. Dislocation substructures within the anomalous slip airplane of single crystal niobium strained at 50 Ok. Acta Metall. 23, 17–21 (1975).

    CAS 

    Google Scholar
     

  • Hsiung, L. L. On the mechanism of anomalous slip in BCC metals. Mater. Sci. Eng. A 528, 329–337 (2010).


    Google Scholar
     

  • Matsui, H. & Kimura, H. A mechanism of the sudden {110} slip noticed in BCC metals deformed at low temperatures. Scr. Metall. 7, 905–913 (1973).

    CAS 

    Google Scholar
     

  • Taylor, G. Feedback on ‘a mechanism of the sudden {110} slip noticed in BCC metals deformed at low temperatures’. Scr. Metall. 8, 459–461 (1974).

    CAS 

    Google Scholar
     

  • Matsui, H. & Kimura, H. Anomalous {110} slip and the function of co-planar double slip in BCC metals. Scr. Metall. 9, 971–978 (1975).


    Google Scholar
     

  • Bulatov, V. V. & Cai, W. Nodal results in dislocation mobility. Phys. Rev. Lett. 89, 115501 (2002).

    PubMed 
    ADS 

    Google Scholar
     

  • Yang, J. B., Zhang, Z. J. & Zhang, Z. F. Quantitative understanding of anomalous slip in Mo. Philos. Magazine. 95, 2026–2045 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • Holzer, J., Chlup, Z., Kruml, T. & Gröger, R. Plastic deformation of magnetically isotropic Cr single crystals compressed at 77 Ok. Int. J. Plast. 138, 102938 (2021).

    CAS 

    Google Scholar
     

  • Louchet, F. & Kubin, L. P. A potential clarification for the anomalous slip of BCC metals from “in situ” experiments. Scr. Metall. 9, 911–916 (1975).

    CAS 

    Google Scholar
     

  • Seeger, A. & Wasserbäch, W. Anomalous slip – a characteristic of high-purity body-centred cubic metals. Phys. Stat. Sol. (a) 189, 27–50 (2002).

    CAS 
    ADS 

    Google Scholar
     

  • Weinberger, C. R., Boyce, B. L. & Battaile, C. C. Slip planes in bcc transition metals. Int. Mater. Rev. 58, 296–314 (2013).

    CAS 

    Google Scholar
     

  • Caillard, D. Geometry and kinetics of glide of screw dislocations in tungsten between 95K and 573K. Acta Mater. 161, 21–34 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • Caillard, D. A. TEM in situ research of the softening of tungsten by rhenium. Acta Mater. 194, 249–256 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • Caillard, D. A. TEM in situ research of alloying results in iron. II—Strong resolution hardening brought on by excessive concentrations of Si and Cr. Acta Mater. 61, 2808–2827 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • Xia, Z. Y., Zhang, Z. J., Yan, J. X., Yang, J. B. & Zhang, Z. F. Simulation of the interplay between two completely different 1/2<111> screw dislocations in body-centred-cubic metallic niobium. Comp. Mater. Sci. 174, 109503 (2020).

    CAS 

    Google Scholar
     

  • Chou, Y. T. Dislocation reactions and networks in anisotropic BCC crystals. Mater. Sci. Eng. 10, 81–86 (1972).

    CAS 

    Google Scholar
     

  • Madec, R. & Kubin, L. P. Second-order junctions and pressure hardening in BCC and FCC crystals. Scr. Mater. 58, 767–770 (2008).

    CAS 

    Google Scholar
     

  • Brunner, D. Comparability of flow-stress measurements on high-purity tungsten single crystals with the kink-pair concept. Mater. Trans., JIM 41, 152–160 (2000).

    CAS 

    Google Scholar
     

  • Srivastava, Ok., Weygand, D., Caillard, D. & Gumbsch, P. Repulsion results in coupled dislocation movement and prolonged work hardening in bcc metals. Nat. Commun. 11, 5098 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Fellinger, M. R., Park, H. & Wilkins, J. W. Pressure-matched embedded-atom methodology potential for niobium. Phys. Rev. B 81, 144119 (2010).

    ADS 

    Google Scholar
     

  • Park, H. et al. Ab initio primarily based empirical potential used to check the mechanical properties of molybdenum. Phys. Rev. B 85, 214121 (2012).

    ADS 

    Google Scholar
     

  • Ackland, G. J. & Thetford, R. An improved N-body semi-empirical mannequin for body-centred cubic transition metals. Philos. Magazine. A 56, 15–30 (1987).

    CAS 
    ADS 

    Google Scholar
     

  • Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural rest made easy. Phys. Rev. Lett. 97, 170201 (2006).

    PubMed 
    ADS 

    Google Scholar
     

  • Rodney, D. Activation enthalpy for kink-pair nucleation on dislocations: Comparability between static and dynamic atomic-scale simulations. Phys. Rev. B 76, 144108 (2007).

    ADS 

    Google Scholar
     

  • Stukowski, A. Visualization and evaluation of atomistic simulation information with OVITO–the Open Visualization Device. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).

    ADS 

    Google Scholar
     

  • Harrod, D. L. & Gold, R. E. Mechanical properties of vanadium and vanadium-based alloys. Int. Met. Rev. 25, 163–222 (1980).

    CAS 

    Google Scholar
     

  • Creten, R., Bressers, J. & De Meester, P. Anomalous slip in high-purity vanadium crystals deformed in compression. Mater. Sci. Eng. 19, 51–53 (1977).


    Google Scholar
     

  • Bressers, J. & De Meester, P. Slip airplane alternative in vanadium at deformation temperatures T≤ 0.15Tm. J. Much less-Frequent Met. 84, 11–23 (1982).

    CAS 

    Google Scholar
     

  • Taylor, G., Bajaj, R. & Carlson, O. N. Anomalous slip in high-purity vanadium crystals. Philos. Magazine. 28, 1035–1042 (1973).

    CAS 
    ADS 

    Google Scholar
     

  • Bolton, C. J. & Taylor, G. Anomalous slip in high-purity niobium single crystals deformed at 77K in stress. Philos. Magazine. 26, 1359–1376 (1972).

    CAS 
    ADS 

    Google Scholar
     

  • Aono, Y., Kuramoto, E. & Kitajima, Ok. Orientation dependence of slip in niobium single crystals at 4.2K and 77K. Scripta Metall. 18, 201–205 (1984).

    CAS 

    Google Scholar
     

  • Wasserbäch, W. & Novak, V. Optical investigation of anomalous slip-line patterns in high-purity niobium and tantalum single crystals after tensile deformation at 77K. Mater. Sci. Eng. 73, 197–202 (1985).


    Google Scholar
     

  • Nagakawa, J. & Meshii, M. The deformation of niobium single crystals at temperatures between 77 and 4.2 Ok. Philos. Magazine. A 44, 1165–1191 (1981).

    CAS 
    ADS 

    Google Scholar
     

  • Garratt-Learn, A. J. & Taylor, G. Optical and electron microscopy of niobium crystals deformed beneath room temperature. Philos. Magazine. A 39, 597–646 (1979).

    ADS 

    Google Scholar
     

  • Takeuchi, S., Kuramoto, E. & Suzuki, T. Orientation dependence of slip in tantalum single crystals. Acta Metall. 20, 909–915 (1972).

    CAS 

    Google Scholar
     

  • Nawaz, M. H. A. & Mordike, B. L. Slip geometry of tantalum and tantalum alloys. Phys. Stat. Sol. (a) 32, 449–458 (1975).

    CAS 
    ADS 

    Google Scholar
     

  • Takeuchi, S., Hashimoto, T. & Maeda, Ok. Plastic deformation of BCC metallic single crystals at very low temperatures. Trans. Japan Inst. Met. 23, 60–69 (1982).

    CAS 

    Google Scholar
     

  • Ackermann, F., Mughrabi, H. & Seeger, A. Temperature and strain-rate dependence of the movement stress of ultrapure niobium single crystals in cyclic deformation. Acta Metall. 31, 1353–1366 (1983).

    CAS 

    Google Scholar
     

  • Suzuki, T., Koizumi, H. & Kirchner, H. O. Ok. Plastic movement stress of BCC transition metals and the Peierls potential. Acta Metall. 43, 2177–2187 (1995).

    CAS 

    Google Scholar
     

  • Liu, G. C., Lau, S. S. & Dorn, J. E. The plastic deformation habits of Mo single crystals underneath compression. Phys. Stat. Sol. (a) 11, 645–651 (1972).

    CAS 
    ADS 

    Google Scholar
     

  • Guiu, F. & Pratt, P. L. The impact of orientation on the yielding and movement of molybdenum single crystals. Phys. Stat. Sol. (b) 15, 539–552 (1966).

    CAS 
    ADS 

    Google Scholar
     

  • Arsenault, R. J. An investigation of the mechanism of thermally activated deformation in tantalum and tantalum-base alloys. Acta Metall. 14, 831–838 (1966).

    CAS 

    Google Scholar
     

  • Werner, M. Temperature and strain-rate dependence of the movement stress of ultrapure tantalum single crystals. Phys. Stat. Sol. (a) 104, 63–78 (1987).

    CAS 
    ADS 

    Google Scholar
     

  • Brunner, D. Temperature dependence of the plastic movement of high-purity tungsten single crystals. Int. J. Mate. Res. 101, 1003–1013 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • Schnitzel, R. H. Deformation of tungsten single crystals from 77 °C to 800 °C. J. Much less Frequent Met. 8, 81–89 (1965).

    CAS 

    Google Scholar
     

  • Marcinkowski, M. J. & Lipsitt, H. A. The plastic deformation of chromium at low temperatures. Acta Metall. 10, 95–111 (1962).

    CAS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments