[ad_1]
Christian, J. W. Some shocking options of the plastic deformation of body-centred cubic metals and alloys. Metall. Trans. 14A, 1237–1256 (1983).
Taylor, G. Thermally-activated deformation of BCC metals and alloys. Prog. Mater Sci. 36, 29–61 (1992).
Bulatov, V. V. et al. Dislocation multi-junctions and pressure hardening. Nature 440, 1174–1178 (2006).
Kaun, L., Luft, A., Richter, J. & Schulze, D. Slip line patterns and lively slip methods of tungsten and molybdenum single crystals weakly deformed in stress at room temperature. Phys. Stat. Sol. 26, 485–499 (1968).
Marichal, C. et al. Origin of anomalous slip in tungsten. Phys. Rev. Lett. 113, 025501 (2014).
Duesbery, M. S. & Foxall, R. A. An in depth research of the deformation of excessive purity niobium single crystals. Philos. Magazine. 20, 719–751 (1969).
Reed, R. E. & Arsenault, R. J. Additional observations of anomalous slip in niobium single crystals. Scr. Steel. 10, 1003–1006 (1976).
Wooden, M. I. & Taylor, G. Niobium – an athermal plateau within the low-temperature yield stress. Philos. Magazine. A 56, 329–342 (1987).
Matsui, H. & Kimura, H. Feedback on “Anomalous slip in a BCC crystal noticed in laptop simulation of screw dislocation movement”. Scr. Metall. 8, 1205–1207 (1974).
Vitek, V. & Taylor, G. Touch upon “Anomalous slip in BCC crystals noticed in laptop simulation of screw dislocation movement”. Scr. Metall. 8, 1283–1285 (1974).
Saka, H., Noda, Ok., Imura, T., Matsui, H. & Kimura, H. HVEM in-situ remark of anomalous (101) slip in molybdenum. Philos. Magazine. 34, 33–48 (1976).
Matsui, H. & Kimura, H. Anomalous {110} slip in high-purity molybdenum single crystals and its comparability with that in V(a) metals. Mater. Sci. Eng. 24, 247–256 (1976).
Wasserbäch, W. Anomalous slip in high-purity niobium and tantalum single crystals. Phys. Stat. Sol. a 147, 417–446 (1995).
Louchet, F. & Kubin, L. P. Dislocation substructures within the anomalous slip airplane of single crystal niobium strained at 50 Ok. Acta Metall. 23, 17–21 (1975).
Hsiung, L. L. On the mechanism of anomalous slip in BCC metals. Mater. Sci. Eng. A 528, 329–337 (2010).
Matsui, H. & Kimura, H. A mechanism of the sudden {110} slip noticed in BCC metals deformed at low temperatures. Scr. Metall. 7, 905–913 (1973).
Taylor, G. Feedback on ‘a mechanism of the sudden {110} slip noticed in BCC metals deformed at low temperatures’. Scr. Metall. 8, 459–461 (1974).
Matsui, H. & Kimura, H. Anomalous {110} slip and the function of co-planar double slip in BCC metals. Scr. Metall. 9, 971–978 (1975).
Bulatov, V. V. & Cai, W. Nodal results in dislocation mobility. Phys. Rev. Lett. 89, 115501 (2002).
Yang, J. B., Zhang, Z. J. & Zhang, Z. F. Quantitative understanding of anomalous slip in Mo. Philos. Magazine. 95, 2026–2045 (2015).
Holzer, J., Chlup, Z., Kruml, T. & Gröger, R. Plastic deformation of magnetically isotropic Cr single crystals compressed at 77 Ok. Int. J. Plast. 138, 102938 (2021).
Louchet, F. & Kubin, L. P. A potential clarification for the anomalous slip of BCC metals from “in situ” experiments. Scr. Metall. 9, 911–916 (1975).
Seeger, A. & Wasserbäch, W. Anomalous slip – a characteristic of high-purity body-centred cubic metals. Phys. Stat. Sol. (a) 189, 27–50 (2002).
Weinberger, C. R., Boyce, B. L. & Battaile, C. C. Slip planes in bcc transition metals. Int. Mater. Rev. 58, 296–314 (2013).
Caillard, D. Geometry and kinetics of glide of screw dislocations in tungsten between 95K and 573K. Acta Mater. 161, 21–34 (2018).
Caillard, D. A. TEM in situ research of the softening of tungsten by rhenium. Acta Mater. 194, 249–256 (2020).
Caillard, D. A. TEM in situ research of alloying results in iron. II—Strong resolution hardening brought on by excessive concentrations of Si and Cr. Acta Mater. 61, 2808–2827 (2013).
Xia, Z. Y., Zhang, Z. J., Yan, J. X., Yang, J. B. & Zhang, Z. F. Simulation of the interplay between two completely different 1/2<111> screw dislocations in body-centred-cubic metallic niobium. Comp. Mater. Sci. 174, 109503 (2020).
Chou, Y. T. Dislocation reactions and networks in anisotropic BCC crystals. Mater. Sci. Eng. 10, 81–86 (1972).
Madec, R. & Kubin, L. P. Second-order junctions and pressure hardening in BCC and FCC crystals. Scr. Mater. 58, 767–770 (2008).
Brunner, D. Comparability of flow-stress measurements on high-purity tungsten single crystals with the kink-pair concept. Mater. Trans., JIM 41, 152–160 (2000).
Srivastava, Ok., Weygand, D., Caillard, D. & Gumbsch, P. Repulsion results in coupled dislocation movement and prolonged work hardening in bcc metals. Nat. Commun. 11, 5098 (2020).
Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
Fellinger, M. R., Park, H. & Wilkins, J. W. Pressure-matched embedded-atom methodology potential for niobium. Phys. Rev. B 81, 144119 (2010).
Park, H. et al. Ab initio primarily based empirical potential used to check the mechanical properties of molybdenum. Phys. Rev. B 85, 214121 (2012).
Ackland, G. J. & Thetford, R. An improved N-body semi-empirical mannequin for body-centred cubic transition metals. Philos. Magazine. A 56, 15–30 (1987).
Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural rest made easy. Phys. Rev. Lett. 97, 170201 (2006).
Rodney, D. Activation enthalpy for kink-pair nucleation on dislocations: Comparability between static and dynamic atomic-scale simulations. Phys. Rev. B 76, 144108 (2007).
Stukowski, A. Visualization and evaluation of atomistic simulation information with OVITO–the Open Visualization Device. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
Harrod, D. L. & Gold, R. E. Mechanical properties of vanadium and vanadium-based alloys. Int. Met. Rev. 25, 163–222 (1980).
Creten, R., Bressers, J. & De Meester, P. Anomalous slip in high-purity vanadium crystals deformed in compression. Mater. Sci. Eng. 19, 51–53 (1977).
Bressers, J. & De Meester, P. Slip airplane alternative in vanadium at deformation temperatures T≤ 0.15Tm. J. Much less-Frequent Met. 84, 11–23 (1982).
Taylor, G., Bajaj, R. & Carlson, O. N. Anomalous slip in high-purity vanadium crystals. Philos. Magazine. 28, 1035–1042 (1973).
Bolton, C. J. & Taylor, G. Anomalous slip in high-purity niobium single crystals deformed at 77K in stress. Philos. Magazine. 26, 1359–1376 (1972).
Aono, Y., Kuramoto, E. & Kitajima, Ok. Orientation dependence of slip in niobium single crystals at 4.2K and 77K. Scripta Metall. 18, 201–205 (1984).
Wasserbäch, W. & Novak, V. Optical investigation of anomalous slip-line patterns in high-purity niobium and tantalum single crystals after tensile deformation at 77K. Mater. Sci. Eng. 73, 197–202 (1985).
Nagakawa, J. & Meshii, M. The deformation of niobium single crystals at temperatures between 77 and 4.2 Ok. Philos. Magazine. A 44, 1165–1191 (1981).
Garratt-Learn, A. J. & Taylor, G. Optical and electron microscopy of niobium crystals deformed beneath room temperature. Philos. Magazine. A 39, 597–646 (1979).
Takeuchi, S., Kuramoto, E. & Suzuki, T. Orientation dependence of slip in tantalum single crystals. Acta Metall. 20, 909–915 (1972).
Nawaz, M. H. A. & Mordike, B. L. Slip geometry of tantalum and tantalum alloys. Phys. Stat. Sol. (a) 32, 449–458 (1975).
Takeuchi, S., Hashimoto, T. & Maeda, Ok. Plastic deformation of BCC metallic single crystals at very low temperatures. Trans. Japan Inst. Met. 23, 60–69 (1982).
Ackermann, F., Mughrabi, H. & Seeger, A. Temperature and strain-rate dependence of the movement stress of ultrapure niobium single crystals in cyclic deformation. Acta Metall. 31, 1353–1366 (1983).
Suzuki, T., Koizumi, H. & Kirchner, H. O. Ok. Plastic movement stress of BCC transition metals and the Peierls potential. Acta Metall. 43, 2177–2187 (1995).
Liu, G. C., Lau, S. S. & Dorn, J. E. The plastic deformation habits of Mo single crystals underneath compression. Phys. Stat. Sol. (a) 11, 645–651 (1972).
Guiu, F. & Pratt, P. L. The impact of orientation on the yielding and movement of molybdenum single crystals. Phys. Stat. Sol. (b) 15, 539–552 (1966).
Arsenault, R. J. An investigation of the mechanism of thermally activated deformation in tantalum and tantalum-base alloys. Acta Metall. 14, 831–838 (1966).
Werner, M. Temperature and strain-rate dependence of the movement stress of ultrapure tantalum single crystals. Phys. Stat. Sol. (a) 104, 63–78 (1987).
Brunner, D. Temperature dependence of the plastic movement of high-purity tungsten single crystals. Int. J. Mate. Res. 101, 1003–1013 (2010).
Schnitzel, R. H. Deformation of tungsten single crystals from 77 °C to 800 °C. J. Much less Frequent Met. 8, 81–89 (1965).
Marcinkowski, M. J. & Lipsitt, H. A. The plastic deformation of chromium at low temperatures. Acta Metall. 10, 95–111 (1962).
[ad_2]