Tuesday, October 4, 2022
HomeNatureAtomically engineered interfaces yield extraordinary electrostriction

Atomically engineered interfaces yield extraordinary electrostriction


  • Ramesh, R. & Schlom, D. G. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4, 257–268 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Yang, M. M. et al. Piezoelectric and pyroelectric results induced by the interface polar symmetry. Nature 584, 377–381 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, F., Jin, L., Xu, Z. & Zhang, S. Electrostrictive impact in ferroelectrics: another method to enhance piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Lehmann, W. et al. Big lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410, 447–450 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yimnirun, R., Moses, P. J., Newnham, R. E. & Meyer Jr, R. J. Electrostrictive pressure in low-permittivity dielectrics. J. Electroceram. 8, 87–98 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Li, F., Jin, L., Xu, Z., Wang, D. & Zhang, S. Electrostrictive impact in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals. Appl. Phys. Lett. 102, 152910 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Zednik, R. J., Varatharajan, A., Oliver, M., Valanoor, N. & McIntyre, P. C. Cellular ferroelastic area partitions in nanocrystalline PZT movies: the direct piezoelectric impact. Adv. Funct. Mater. 21, 3104–3110 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Li, F. et al. Extremely-high piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, Q. M., Bharti, V. & Zhao, X. Big electrostriction and relaxor ferroelectric behaviour in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Korobko, R. et al. Big electrostriction in Gd-doped ceria. Adv. Mater. 24, 5857–5861 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Yavo, N. et al. Giant nonclassical electrostriction in (Y, Nb)-stabilised δ-Bi2O3. Adv. Funct. Mater. 26, 1138–1142 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Korobko, R. et al. In situ prolonged X-ray absorption advantageous construction examine of electrostriction in Gd-doped ceria. Appl. Phys. Lett. 106, 042904 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Hadad, M., Ashraf, H., Mohanty, G., Sandu, C. & Muralt, P. Key-features in processing and microstructure for attaining large electrostriction in gadolinium-doped ceria skinny movies. Acta Mater. 118, 1–7 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Santucci, S., Zhang, H., Sanna, S., Pryds, N. & Esposito, V. Enhanced electromechanical coupling of TiN/Ce0.8Gd0.2O1.9 skinny movie electrostrictor. APL Mater. 7, 071104 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Sata, N., Eberman, Okay., Eberl, Okay. & Maier, J. Mesoscopic quick ion conduction in nanometer-scale planar heterostructures. Nature 408, 946–949 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Domínguez, C. et al. Size scales of interfacial coupling between steel and insulator phases in oxides. Nat. Mater. 19, 1182–1187 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cancellieri, C. et al. Electrostriction at LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 107, 056102 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Junquera, J. & Ghosez, P. Crucial thickness for ferroelectricity in perovskite ultrathin movies. Nature 422, 506–509 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Fong, D. D. et al. Ferroelectricity in ultrathin perovskite movies. Science 304, 1650–1653 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mani, B. Okay., Chang, C. M., Lisenkov, S. & Ponomareva, I. Crucial thickness for antiferroelectricity in PbZrO3. Phys. Rev. Lett. 115, 097601 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, W. & Ouyang, J. In Nanostructures In Ferroelectric Movies For Vitality Functions(ed. Ouyang, J.) 163–201 (Elsevier, 2019); https://doi.org/10.1016/B978-0-12-813856-4.00006-5

  • Ji, D. et al. Freestanding crystalline oxide perovskites all the way down to monolayer restrict. Nature 570, 87–90 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sanna, S. et al. Enhancement of chemical stability in confined δ-Bi2O3. Nat. Mater. 14, 500–504 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sanna, S. et al. Structural instability and electrical properties of epitaxial Er2O3-stabilized Bi2O3 skinny movies. Strong State Ion. 266, 13–18 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Varenik, M. et al. Dopant focus controls the quasi-static electrostrictive pressure response of ceria ceramics. ACS Appl. Mater. Interfaces 12, 39381–39387 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, Q. et al. Big thermally enhanced electrostriction and polar floor phases in La2Mo2O9 oxygen ion conductors. Phys. Rev. Mater. 2, 041403(R) (2018).

    ADS 
    Article 

    Google Scholar
     

  • Chen, B. et al. Giant electrostrictive responses in lead halide perovskites. Nat. Mater. 17, 1020–1026 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Das, T. et al. Anisotropic chemical pressure in cubic ceria attributable to oxygen-vacancy-induced elastic dipoles. Phys. Chem. Chem. Phys. 20, 15293–15299 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kraynis, O. et al. Modeling pressure distribution on the atomic stage in doped ceria movies with prolonged X-ray absorption advantageous construction spectroscopy. Inorg. Chem. 58, 7527–7536 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Born, M. & Mayer, J. E. Zur gittertheorie der ionenkristalle. Z. Phys. 75, 1–18 (1932).

    Article 

    Google Scholar
     

  • Chapman, J. B. J., Cohen, R. E., Kimmel, A. V. & Duffy, M. D. Bettering the purposeful management of aged ferroelectrics utilizing insights from atomistic modeling. Phys. Rev. Lett. 119, 177602 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, S. & Cohen, R. E. Response of methylammonium lead iodide to exterior stimuli and caloric results from molecular dynamics simulations. J. Phys. Chem. C 120, 17274–17281 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Genreith-Schriever, A. & De Souza, R. A. Subject-enhanced ion transport in solids: reexamination with molecular dynamics simulations. Phys. Rev. B 94, 224304 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Nosé, S. A unified formulation of the fixed temperature molecular dynamics strategies. J. Chem. Phys. 81, 511–519 (1984).

    ADS 
    Article 

    Google Scholar
     

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Khurram Shehzad on No Confidence Last Round
    Asif Baloch on Update No.3
    Khurram on Update No.2
    Mehjabeen asif on Update On Pakistan Iran Border
    Asim Meraj on WhatsApp