Friday, March 29, 2024
HomeNatureAtomically engineered interfaces yield extraordinary electrostriction

Atomically engineered interfaces yield extraordinary electrostriction

[ad_1]

  • Ramesh, R. & Schlom, D. G. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4, 257–268 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Yang, M. M. et al. Piezoelectric and pyroelectric results induced by the interface polar symmetry. Nature 584, 377–381 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, F., Jin, L., Xu, Z. & Zhang, S. Electrostrictive impact in ferroelectrics: another method to enhance piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Lehmann, W. et al. Big lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410, 447–450 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yimnirun, R., Moses, P. J., Newnham, R. E. & Meyer Jr, R. J. Electrostrictive pressure in low-permittivity dielectrics. J. Electroceram. 8, 87–98 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Li, F., Jin, L., Xu, Z., Wang, D. & Zhang, S. Electrostrictive impact in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals. Appl. Phys. Lett. 102, 152910 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Zednik, R. J., Varatharajan, A., Oliver, M., Valanoor, N. & McIntyre, P. C. Cellular ferroelastic area partitions in nanocrystalline PZT movies: the direct piezoelectric impact. Adv. Funct. Mater. 21, 3104–3110 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Li, F. et al. Extremely-high piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, Q. M., Bharti, V. & Zhao, X. Big electrostriction and relaxor ferroelectric behaviour in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Korobko, R. et al. Big electrostriction in Gd-doped ceria. Adv. Mater. 24, 5857–5861 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Yavo, N. et al. Giant nonclassical electrostriction in (Y, Nb)-stabilised δ-Bi2O3. Adv. Funct. Mater. 26, 1138–1142 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Korobko, R. et al. In situ prolonged X-ray absorption advantageous construction examine of electrostriction in Gd-doped ceria. Appl. Phys. Lett. 106, 042904 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Hadad, M., Ashraf, H., Mohanty, G., Sandu, C. & Muralt, P. Key-features in processing and microstructure for attaining large electrostriction in gadolinium-doped ceria skinny movies. Acta Mater. 118, 1–7 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Santucci, S., Zhang, H., Sanna, S., Pryds, N. & Esposito, V. Enhanced electromechanical coupling of TiN/Ce0.8Gd0.2O1.9 skinny movie electrostrictor. APL Mater. 7, 071104 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Sata, N., Eberman, Okay., Eberl, Okay. & Maier, J. Mesoscopic quick ion conduction in nanometer-scale planar heterostructures. Nature 408, 946–949 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Domínguez, C. et al. Size scales of interfacial coupling between steel and insulator phases in oxides. Nat. Mater. 19, 1182–1187 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cancellieri, C. et al. Electrostriction at LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 107, 056102 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Junquera, J. & Ghosez, P. Crucial thickness for ferroelectricity in perovskite ultrathin movies. Nature 422, 506–509 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Fong, D. D. et al. Ferroelectricity in ultrathin perovskite movies. Science 304, 1650–1653 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mani, B. Okay., Chang, C. M., Lisenkov, S. & Ponomareva, I. Crucial thickness for antiferroelectricity in PbZrO3. Phys. Rev. Lett. 115, 097601 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, W. & Ouyang, J. In Nanostructures In Ferroelectric Movies For Vitality Functions(ed. Ouyang, J.) 163–201 (Elsevier, 2019); https://doi.org/10.1016/B978-0-12-813856-4.00006-5

  • Ji, D. et al. Freestanding crystalline oxide perovskites all the way down to monolayer restrict. Nature 570, 87–90 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sanna, S. et al. Enhancement of chemical stability in confined δ-Bi2O3. Nat. Mater. 14, 500–504 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sanna, S. et al. Structural instability and electrical properties of epitaxial Er2O3-stabilized Bi2O3 skinny movies. Strong State Ion. 266, 13–18 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Varenik, M. et al. Dopant focus controls the quasi-static electrostrictive pressure response of ceria ceramics. ACS Appl. Mater. Interfaces 12, 39381–39387 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, Q. et al. Big thermally enhanced electrostriction and polar floor phases in La2Mo2O9 oxygen ion conductors. Phys. Rev. Mater. 2, 041403(R) (2018).

    ADS 
    Article 

    Google Scholar
     

  • Chen, B. et al. Giant electrostrictive responses in lead halide perovskites. Nat. Mater. 17, 1020–1026 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Das, T. et al. Anisotropic chemical pressure in cubic ceria attributable to oxygen-vacancy-induced elastic dipoles. Phys. Chem. Chem. Phys. 20, 15293–15299 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kraynis, O. et al. Modeling pressure distribution on the atomic stage in doped ceria movies with prolonged X-ray absorption advantageous construction spectroscopy. Inorg. Chem. 58, 7527–7536 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Born, M. & Mayer, J. E. Zur gittertheorie der ionenkristalle. Z. Phys. 75, 1–18 (1932).

    Article 

    Google Scholar
     

  • Chapman, J. B. J., Cohen, R. E., Kimmel, A. V. & Duffy, M. D. Bettering the purposeful management of aged ferroelectrics utilizing insights from atomistic modeling. Phys. Rev. Lett. 119, 177602 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, S. & Cohen, R. E. Response of methylammonium lead iodide to exterior stimuli and caloric results from molecular dynamics simulations. J. Phys. Chem. C 120, 17274–17281 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Genreith-Schriever, A. & De Souza, R. A. Subject-enhanced ion transport in solids: reexamination with molecular dynamics simulations. Phys. Rev. B 94, 224304 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Nosé, S. A unified formulation of the fixed temperature molecular dynamics strategies. J. Chem. Phys. 81, 511–519 (1984).

    ADS 
    Article 

    Google Scholar
     

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments