Tuesday, March 5, 2024
HomeNatureCaspase-7 prompts ASM to restore gasdermin and perforin pores

Caspase-7 prompts ASM to restore gasdermin and perforin pores

[ad_1]

  • Lamkanfi, M. et al. Focused peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol. Cell. Proteomics 7, 2350–2363 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sellin, M. E. et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives contaminated enterocyte expulsion to limit Salmonella replication within the intestinal mucosa. Cell Host Microbe 16, 237–248 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rauch, I. et al. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 launch through activation of caspase-1 and -8. Immunity 46, 649–659 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kuida, Okay. et al. Decreased apoptosis within the mind and untimely lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lakhani, S. A. et al. Caspases 3 and seven: key mediators of mitochondrial occasions of apoptosis. Science 311, 847–851 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation assets. Genome Biol. 10, R130 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Reikvam, D. H. et al. Depletion of murine intestinal microbiota: results on intestine mucosa and epithelial gene expression. PLoS One 6, e17996 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marchiando, A. M. et al. The epithelial barrier is maintained by in vivo tight junction enlargement throughout pathologic intestinal epithelial shedding. Gastroenterology 140, 1208–1218 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nozaki, Okay., Li, L. & Miao, E. A. Innate sensors set off regulated cell dying to fight intracellular an infection. Annu. Rev. Immunol. 40, 469–498 (2022).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Andrews, N. W., Almeida, P. E. & Corrotte, M. Harm management: mobile mechanisms of plasma membrane restore. Traits Cell Biol. 24, 734–742 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Edelmann, B. et al. Caspase-8 and caspase-7 sequentially mediate proteolytic activation of acid sphingomyelinase in TNF-R1 receptosomes. EMBO J. 30, 379–394 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ferlinz, Okay. et al. Practical characterization of the N-glycosylation websites of human acid sphingomyelinase by site-directed mutagenesis. Eur. J. Biochem. 243, 511–517 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andrews, N. W., Corrotte, M. & Castro-Gomes, T. Above the fray: floor reworking by secreted lysosomal enzymes results in endocytosis-mediated plasma membrane restore. Semin. Cell Dev. Biol. 45, 10–17 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Llacuna, L., Marí, M., Garcia-Ruiz, C., Fernandez-Checa, J. C. & Morales, A. Crucial function of acidic sphingomyelinase in murine hepatic ischemia-reperfusion harm. Hepatology 44, 561–572 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Müller, A. J. et al. The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to provoke intestine irritation. Cell Host Microbe 6, 125–136 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Quan, L. T. et al. Proteolytic activation of the cell dying protease Yama/CPP32 by granzyme B. Proc. Natl Acad. Sci. USA 93, 1972–1976 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Darmon, A. J., Nicholson, D. W. & Bleackley, R. C. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377, 446–448 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chinnaiyan, A. M. et al. Cytotoxic T-cell-derived granzyme B prompts the apoptotic protease ICE-LAP3. Curr. Biol. 6, 897–899 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gu, Y. et al. Processing and activation of CMH-1 by granzyme B. J. Biol. Chem. 271, 10816–10820 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Orth, Okay., Chinnaiyan, A. M., Garg, M., Froelich, C. J. & Dixit, V. M. The CED-3/ICE-like protease Mch2 is activated throughout apoptosis and cleaves the dying substrate lamin A. J. Biol. Chem. 271, 16443–16446 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell dying as a defence towards an infection. Nat. Rev. Immunol. 17, 151–164 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Batista, J. H. & da Silva Neto, J. F. Chromobacterium violaceum pathogenicity: updates and insights from genome sequencing of novel Chromobacterium species. Entrance. Microbiol. 8, 2213 (2017).

  • Maltez, V. I. et al. Inflammasomes coordinate pyroptosis and pure killer cell cytotoxicity to clear an infection by a ubiquitous environmental bacterium. Immunity 43, 987–997 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rongvaux, A. et al. Apoptotic caspases forestall the induction of kind I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McArthur, Okay. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux throughout apoptosis. Science 359, eaao6047 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sauer, J. D. et al. Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protecting immunity. Proc. Natl Acad. Sci. USA 108, 12419–12424 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Warren, S. E. et al. Technology of a Listeria vaccine pressure by enhanced caspase-1 activation. Eur. J. Immunol. 41, 1934–1940 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Clark, S. E., Schmidt, R. L., McDermott, D. S. & Lenz, L. L. A Batf3/Nlrp3/IL-18 axis promotes pure killer cell IL-10 manufacturing throughout Listeria monocytogenes an infection. Cell Rep. 23, 2582–2594 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kägi, D., Ledermann, B., Bürki, Okay., Hengartner, H. & Zinkernagel, R. M. CD8+ T cell-mediated safety towards an intracellular bacterium by perforin-dependent cytotoxicity. Eur. J. Immunol. 24, 3068–3072 (1994).

    PubMed 
    Article 

    Google Scholar
     

  • Harty, J. T., Lenz, L. L. & Bevan, M. J. Main and secondary immune responses to Listeria monocytogenes. Curr. Opin. Immunol. 8, 526–530 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hsu, Okay. M., Pratt, J. R., Akers, W. J., Achilefu, S. I. & Yokoyama, W. M. Murine cytomegalovirus shows selective an infection of cells inside hours after systemic administration. J. Gen. Virol. 90, 33–43 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kägi, D. et al. Cytotoxicity mediated by T cells and pure killer cells is significantly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Rühl, S. et al. ESCRT-dependent membrane restore negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to control necroptotic cell dying and its penalties. Cell 169, 286–300 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boucher, D. et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome exercise. J. Exp. Med. 215, 827–840 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jost, P. J. et al. XIAP discriminates between kind I and kind II FAS-induced apoptosis. Nature 460, 1035–1039 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Halle, S. et al. In vivo killing capability of cytotoxic T cells is proscribed and includes dynamic interactions and T cell cooperativity. Immunity 44, 233–245 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Keefe, D. et al. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23, 249–262 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thiery, J. et al. Perforin prompts clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane restore and supply of granzyme B for granzyme-mediated apoptosis. Blood 115, 1582–1593 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jorgensen, I., Zhang, Y., Krantz, B. A. & Miao, E. A. Pyroptosis triggers pore-induced intracellular traps (PITs) that seize micro organism and result in their clearance by efferocytosis. J. Exp. Med. 213, 2113–2128 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuida, Okay. et al. Altered cytokine export and apoptosis in mice poor in interleukin-1 beta changing enzyme. Science 267, 2000–2003 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, T. S., Hunot, S., Kuida, Okay. & Flavell, R. A. Caspase knockouts: issues of life and dying. Cell Dying Differ. 6, 1043–1053 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism towards intracellular micro organism. Nat. Immunol. 11, 1136–1142 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wheat, R. L., Clark, P. Y. & Brown, M. G. Quantitative measurement of infectious murine cytomegalovirus genomes in real-time PCR. J. Virol. Strategies 112, 107–113 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barthel, M. et al. Pretreatment of mice with streptomycin gives a Salmonella enterica serovar Typhimurium colitis mannequin that enables evaluation of each pathogen and host. Infect. Immun. 71, 2839–2858 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Butler, S. L. et al. The antigen for Hep Par 1 antibody is the urea cycle enzyme carbamoyl phosphate synthetase 1. Lab. Make investments. 88, 78–88 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sato, T. et al. Single Lgr5 stem cells construct crypt-villus constructions in vitro and not using a mesenchymal area of interest. Nature 459, 262–265 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miyoshi, H. & Stappenbeck, T. S. In vitro enlargement and genetic modification of gastrointestinal stem cells in spheroid tradition. Nat. Protoc. 8, 2471–2482 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • von Moltke, J. et al. Speedy induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490, 107–111 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Gregory, S. H., Jiang, X. & Wing, E. J. Lymphokine-activated killer cells lyse Listeria-infected hepatocytes and produce elevated portions of interferon-γ. J. Infect. Dis. 174, 1073–1079 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Badovinac, V. P. & Harty, J. T. Adaptive immunity and enhanced CD8+ T cell response to Listeria monocytogenes within the absence of perforin and IFN-γ. J. Immunol. 164, 6444–6452 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmed, R., Salmi, A., Butler, L. D., Chiller, J. M. & Oldstone, M. B. Number of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently contaminated mice. Position in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160, 521–540 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cooper, H. S., Murthy, S. N., Shah, R. S. & Sedergran, D. J. Clinicopathologic examine of dextran sulfate sodium experimental murine colitis. Lab. Make investments. 69, 238–249 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments