Friday, September 30, 2022
HomeNatureCLN3 is required for the clearance of glycerophosphodiesters from lysosomes

CLN3 is required for the clearance of glycerophosphodiesters from lysosomes


  • Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Medoh, U. N., Chen, J. Y. & Abu-Remaileh, M. Classes from metabolic perturbations in lysosomal storage problems for neurodegeneration. Curr. Opin. Syst. Biol. 29, 100408 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage ailments. Nat. Rev. Dis. Primers 4, 27 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Ferguson, S. M. Neuronal lysosomes. Neurosci. Lett. 697, 1–9 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perera, R. M. & Zoncu, R. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 32, 223–253 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Savini, M., Zhao, Q. & Wang, M. C. Lysosomes: signaling hubs for metabolic sensing and longevity. Traits Cell Biol. 29, 876–887 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ballabio, A. & Gieselmann, V. Lysosomal problems: from storage to mobile harm. Biochim. Biophys. Acta 1793, 684–696 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boustany, R. M. Lysosomal storage ailments—the horizon expands. Nat. Rev. Neurol. 9, 583–598 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marques, A. R. A. & Saftig, P. Lysosomal storage problems—challenges, ideas and avenues for remedy: past uncommon ailments. J. Cell Sci. 132, jcs221739 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wallings, R. L., Humble, S. W., Ward, M. E. & Wade-Martins, R. Lysosomal dysfunction on the centre of Parkinson’s illness and frontotemporal dementia/amyotrophic lateral sclerosis. Traits Neurosci. 42, 899–912 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, C., Telpoukhovskaia, M. A., Bahr, B. A., Chen, X. & Gan, L. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative ailments. Curr. Opin. Neurobiol. 48, 52–58 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thai, T. H. et al. Regulation of the germinal middle response by microRNA-155. Science 316, 604–608 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pisoni, R. L., Acker, T. L., Lisowski, Okay. M., Lemons, R. M. & Thoene, J. G. A cysteine-specific lysosomal transport system supplies a significant route for the supply of thiol to human fibroblast lysosomes: doable function in supporting lysosomal proteolysis. J. Cell Biol. 110, 327–335 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eiberg, H., Gardiner, R. M. & Mohr, J. Batten illness (Spielmeyer-Sjogren illness) and haptoglobins (HP): indication of linkage and project to chr. 16. Clin. Genet. 36, 217–218 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lerner, T.J. et al. Isolation of a novel gene underlying Batten illness, CLN3. Cell 82, 949–957 (1995).

    Article 

    Google Scholar
     

  • Mirza, M. et al. The CLN3 gene and protein: what we all know. Mol. Genet. Genomic Med. 7, e859 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Butz, E. S., Chandrachud, U., Mole, S. E. & Cotman, S. L. Shifting in the direction of a brand new period of genomics within the neuronal ceroid lipofuscinoses. Biochim. Biophys. Acta Mol. Foundation Dis. 1866, 165571 (2019).

  • Jarvela, I. et al. Biosynthesis and intracellular focusing on of the CLN3 protein faulty in Batten illness. Hum. Mol. Genet. 7, 85–90 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Storch, S., Pohl, S. & Braulke, T. A dileucine motif and a cluster of acidic amino acids within the second cytoplasmic area of the batten disease-related CLN3 protein are required for environment friendly lysosomal focusing on. J. Biol. Chem. 279, 53625–53634 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mao, Q., Foster, B. J., Xia, H. & Davidson, B. L. Membrane topology of CLN3, the protein underlying Batten illness. FEBS Lett. 541, 40–46 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ezaki, J. et al. Characterization of Cln3p, the gene product answerable for juvenile neuronal ceroid lipofuscinosis, as a lysosomal integral membrane glycoprotein. J. Neurochem. 87, 1296–1308 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oetjen, S., Kuhl, D. & Hermey, G. Revisiting the neuronal localization and trafficking of CLN3 in juvenile neuronal ceroid lipofuscinosis. J. Neurochem. 139, 456–470 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perland, E., Bagchi, S., Klaesson, A. & Fredriksson, R. Traits of 29 novel atypical solute carriers of main facilitator superfamily sort: evolutionary conservation, predicted construction and neuronal co-expression. Open Biol. 7, 170142 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mitchison, H. M. et al. Focused disruption of the Cln3 gene supplies a mouse mannequin for Batten illness. The Batten Mouse Mannequin Consortium [corrected]. Neurobiol. Dis. 6, 321–334 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kovacs, A. D. & Pearce, D. A. Discovering essentially the most applicable mouse mannequin of juvenile CLN3 (Batten) illness for therapeutic research: the significance of genetic background and gender. Dis. Mannequin. Mech. 8, 351–361 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lojewski, X. et al. Human iPSC fashions of neuronal ceroid lipofuscinosis seize distinct results of TPP1 and CLN3 mutations on the endocytic pathway. Hum. Mol. Genet. 23, 2005–2022 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Platt, F. M. Sphingolipid lysosomal storage problems. Nature 510, 68–75 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fuller, M. & Futerman, A. H. The mind lipidome in neurodegenerative lysosomal storage problems. Biochem. Biophys. Res. Commun. 504, 623–628 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hobert, J. A. & Dawson, G. A novel function of the Batten illness gene CLN3: affiliation with BMP synthesis. Biochem. Biophys. Res. Commun. 358, 111–116 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Padilla-Lopez, S., Langager, D., Chan, C. H. & Pearce, D. A. BTN1, the Saccharomyces cerevisiae homolog to the human Batten illness gene, is concerned in phospholipid distribution. Dis. Mannequin. Mech. 5, 191–199 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kopp, F. et al. The glycerophospho metabolome and its affect on amino acid homeostasis revealed by mind metabolomics of GDE1(−/−) mice. Chem. Biol. 17, 831–840 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allen, F., Pon, A., Wilson, M., Greiner, R. & Wishart, D. CFM-ID: an internet server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 42, W94–W99 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sumner, L. W. et al. Proposed minimal reporting requirements for chemical evaluation Chemical Evaluation Working Group (CAWG) Metabolomics Requirements Initiative (MSI). Metabolomics 3, 211–221 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dang Do, A. N. et al. Neurofilament mild chain ranges correlate with scientific measures in CLN3 illness. Genet. Med. 23, 751–757 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fowler, S. & De Duve, C. Digestive exercise of lysosomes. 3. The digestion of lipids by extracts of rat liver lysosomes. J. Biol. Chem. 244, 471–481 (1969).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schmidtke, C. et al. Lysosomal proteome evaluation reveals that CLN3-defective cells have a number of enzyme deficiencies related to adjustments in intracellular trafficking. J. Biol. Chem. 294, 9592–9604 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Corda, D. et al. The rising physiological roles of the glycerophosphodiesterase household. FEBS J. 281, 998–1016 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patton-Vogt, J. Transport and metabolism of glycerophosphodiesters produced by way of phospholipid deacylation. Biochim. Biophys. Acta 1771, 337–342 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rigoni, M. et al. Equal results of snake PLA2 neurotoxins and lysophospholipid-fatty acid mixtures. Science 310, 1678–1680 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fallbrook, A., Turenne, S. D., Mamalias, N., Kish, S. J. & Ross, B. M. Phosphatidylcholine and phosphatidylethanolamine metabolites might regulate mind phospholipid catabolism through inhibition of lysophospholipase exercise. Mind Res. 834, 207–210 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Storey, J. D. A direct method to false discovery charges. J. R. Stat. Soc. B 64, 479–498 (2002).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Wyant, G. A. et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE database and associated instruments and sources in 2019: enhancing help for quantification information. Nucleic Acids Res. 47, D442–D450 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salek, R. M., Steinbeck, C., Viant, M. R., Goodacre, R. & Dunn, W. B. The function of reporting requirements for metabolite annotation and identification in metabolomic research. Gigascience 2, 13 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chicken, S. S., Marur, V. R., Sniatynski, M. J., Greenberg, H. Okay. & Kristal, B. S. Serum lipidomics profiling utilizing LC-MS and high-energy collisional dissociation fragmentation: give attention to triglyceride detection and characterization. Anal. Chem. 83, 6648–6657 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taguchi, R. & Ishikawa, M. Exact and international identification of phospholipid molecular species by an Orbitrap mass spectrometer and automatic search engine Lipid Search. J. Chromatogr. A 1217, 4229–4239 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yamada, T. et al. Growth of a lipid profiling system utilizing reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with fast polarity switching and an automatic lipid identification software program. J. Chromatogr. A 1292, 211–218 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hankin, J. A., Murphy, R. C., Barkley, R. M. & Gijon, M. A. Ion mobility and tandem mass spectrometry of phosphatidylglycerol and bis(monoacylglycerol)phosphate (BMP). Int. J. Mass Spectrom. 378, 255–263 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells utilizing the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krink-Koutsoubelis, N. et al. Engineered manufacturing of short-chain acyl-coenzyme A esters in Saccharomyces cerevisiae. ACS Synth. Biol. 7, 1105–1115 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, B., Berrie, C. P., Corda, D. & Farquhar, M. G. GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proc. Natl Acad. Sci. USA 100, 1745–1750 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Khurram Shehzad on No Confidence Last Round
    Asif Baloch on Update No.3
    Khurram on Update No.2
    Mehjabeen asif on Update On Pakistan Iran Border
    Asim Meraj on WhatsApp