Cumulative polarization in conductive interfacial ferroelectrics

0
6

[ad_1]

  • Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woods, C. R. et al. Cost-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasuda, Ok., Wang, X., Watanabe, Ok., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 142–1466 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fei, Z. et al. Ferroelectric switching of a two-dimensional steel. Nature 560, 336–339 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 right down to the atomic monolayer restrict. Nat. Commun. 10, 1775 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, P. et al. A room-temperature ferroelectric semimetal. Sci. Adv. 5, eaax5080 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Barrera, S. C. et al. Direct measurement of ferroelectric polarization in a tunable semimetal. Nat. Commun. 12, 5298 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition steel dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, Y. et al. Room-temperature ferroelectricity in 1T′-ReS2 multilayers. Phys. Rev. Lett. 128, 067601 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipatov, A. et al. Direct statement of ferroelectricity in two-dimensional MoS2. NPJ 2D Mater. Appl. 6, 18 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Strains, M. & Glass, A. Ideas and Functions of Ferroelectrics and Associated Supplies (Oxford Univ. Press, 2001).

  • Wu, M. & Li, J. Sliding ferroelectricity in 2D van der Waals supplies: associated physics and future alternatives. Proc. Natl Acad. Sci. USA 118, e2115703118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric supplies. Nature 442, 759–765 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Setter, N. et al. Ferroelectric skinny movies: overview of supplies, properties, and purposes. J. Appl. Phys. 100, 051606 (2006).

  • Anderson, P. W. & Blount, E. I. Symmetry concerns on martensitic transformations: ‘ferroelectric’ metals? Phys. Rev. Lett. 14, 217–219 (1965).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Xue, F., He, J. H. & Zhang, X. Rising van der Waals ferroelectrics: distinctive properties and novel units. Appl. Phys. Rev. 8, 021316 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iwazaki, Y., Suzuki, T., Mizuno, Y. & Tsuneyuki, S. Doping-induced part transitions in ferroelectric BaTiO3 from first-principles calculations. Phys. Rev. B. Condens. Matter Mater. Phys. 86, 214103 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y., Liu, X., Burton, J. D., Jaswal, S. S. & Tsymbal, E. Y. Ferroelectric instability beneath screened Coulomb interactions. Phys. Rev. Lett. (2012).

  • Zhao, H. J. et al. Meta-screening and permanence of polar distortion in metallized ferroelectrics. Phys. Rev. B. 97, 054107 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Shi, Y. et al. A ferroelectric-like structural transition in a steel. Nat. Mater. 12, 1024–1027 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. X. & Ariando, A. Evaluation on ferroelectric/polar metals. Jpn. J. Appl. Phys. 59, SI0802 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dawber, M., Rabe, Ok. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jia, C. L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric movies. Nat. Mater. 6, 64–69 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide skinny movies. Appl. Phys. Lett. 99, 102903 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alden, J. S. et al. Pressure solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weston, A. et al. Atomic reconstruction in twisted bilayers of transition steel dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition steel dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira, F., Enaldiev, V. V., Fal’ko, V. I. & Magorrian, S. J. Weak ferroelectric cost switch in layer-asymmetric bilayers of 2D semiconductors. Sci. Rep. 11, 13422 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magorrian, S. J. et al. Multifaceted moiré superlattice physics in twisted bilayers. Phys. Rev. B. 104, 125440 (2021).

  • Sinai, O. & Kronik, L. Simulated doping of Si from first ideas utilizing pseudoatoms. Phys. Rev. B – Condens. Matter Mater. Phys. 87, 235305 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Collins, L., Kilpatrick, J. I., Kalinin, S. V. & Rodriguez, B. J. In direction of nanoscale electrical measurements in liquid by superior KPFM methods: a overview. Experiences Prog. Phys. 81, 086101 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Sung, J. et al. Damaged mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. Direct statement of van der Waals stacking–dependent interlayer magnetism. Science 366, 983–987 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaňo, V. et al. Synthetic heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, X., Pyatakov, A. P. & Ren, W. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett. 125, 247601 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density practical dispersion correction (DFT-D) for the 94 components H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B – Condens. Matter Mater. Phys. 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program venture for quantumsimulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here