Tuesday, February 7, 2023
HomeNatureDiscovery of chalcogenides buildings and compositions utilizing blended fluxes

Discovery of chalcogenides buildings and compositions utilizing blended fluxes

[ad_1]

  • Kanatzidis, M. G. Discovery-synthesis, design, and prediction of chalcogenide phases. Inorg. Chem. 56, 3158–3173 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Shoemaker, D. P. et al. Understanding fluxes as media for directed synthesis: in situ native construction of molten potassium polysulfides. J. Am. Chem. Soc. 134, 9456–9463 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Haynes, A. S., Stoumpos, C. C., Chen, H., Chica, D. & Kanatzidis, M. G. Panoramic synthesis as an efficient supplies discovery software: the system Cs/Sn/P/Se as a check case. J. Am. Chem. Soc. 139, 10814–10821 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Nunn, W. et al. Novel synthesis strategy for “cussed” metals and metallic oxides. Proc. Natl Acad. Sci.  USA 118, e2105713118 (2021).

  • Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design utilizing machine studying: generative fashions for matter engineering. Science 361, 360–365 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Latest advances and functions of machine studying in solid-state supplies science. NPJ Comput. Mater. 5, 83 (2019).

    ADS 

    Google Scholar
     

  • Oganov, A. R., Pickard, C. J., Zhu, Q. & Wants, R. J. Construction prediction drives supplies discovery. Nat. Rev. Mater. 4, 331–348 (2019).

    ADS 

    Google Scholar
     

  • Alberi, Okay. et al. The 2019 supplies by design roadmap. J. Phys. D Appl. Phys. 52, 013001 (2018).

    ADS 

    Google Scholar
     

  • Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Environment friendly topological supplies discovery utilizing symmetry indicators. Nat. Phys. 15, 470–476 (2019).

    CAS 

    Google Scholar
     

  • Tabor, D. P. et al. Accelerating the invention of supplies for clear power within the period of sensible automation. Nat. Rev. Mater. 3, 5–20 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Corbett, J. D. Exploratory synthesis within the stable state. Infinite wonders. Inorg. Chem. 39, 5178–5191 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Arachchige, I. U. et al. Mercouri G. Kanatzidis: excellence and improvements in inorganic and solid-state chemistry. Inorg. Chem. 56, 7582–7597 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Kovnir, Okay. Predictive synthesis. Chem. Mater. 33, 4835–4841 (2021).

    CAS 

    Google Scholar
     

  • Chiotti, P. & Markuszewski, R. Binary programs sodium sulfide-sodium hydroxide and sodium carbonate-sodium hydroxide. J. Chem. Eng. Knowledge 30, 197–201 (1985).

    CAS 

    Google Scholar
     

  • Seefuth, R. N. & Sharma, R. A. Solubility of Li2 S in LiCl ‐ KCl melts. J. Electrochem. Soc. 135, 796 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • Androulakis, J. et al. Dimensional discount: a design software for brand new radiation detection supplies. Adv. Mater. 23, 4163–4167 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Ganglberger, E. Die Kristallstruktur von Nb5Cu4Si4. Monatsh. Chem. Chem. Mon. 99, 549–556 (1968).

    CAS 

    Google Scholar
     

  • Zhou, X. et al. New compounds and part collection of nickel sulfides through oxidation state management in molten hydroxides. J. Am. Chem. Soc. 143, 13646–13654 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Friedrich, A., Kunz, M., Miletich, R. & Pattison, P. Excessive-pressure habits of Ba(OH)2 part transitions and bulk modulus. Phys. Rev. B 66, 214103 (2002).

    ADS 

    Google Scholar
     

  • Zhang, X., Hogan, T., Kannewurf, C. R. & Kanatzidis, M. G. Sulfur p-band gap era in β-BaCu2S2. Synthesis of metallic OkayxBa1−xCu2S2 from molten blended Okay·Ba polysulfide salts. J. Alloys Compd. 236, 1–5 (1996).

    CAS 

    Google Scholar
     

  • Li, W. et al. Synthesis, construction, and properties of the layered oxyselenide Ba2CuO2Cu2Se2. Inorg. Chem. 57, 5108–5113 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Lux, H., Kuhn, R. & Niedermaier, T. Reaktionen und Gleichgewichte in Alkalihydroxydschmelzen. III. Peroxydgleichgewichte. Z. Anorg. Allg. Chem. 298, 285–301 (1959).

    CAS 

    Google Scholar
     

  • Flood, H. & Förland, T. The acidic and primary properties of oxides. Acta Chem. Scand. 1, 592–606 (1947).

    CAS 
    PubMed 

    Google Scholar
     

  • Pöhls, J.-H., Heyberger, M. & Mar, A. Comparability of computational and experimental inorganic crystal buildings. J. Strong State Chem. 290, 121557 (2020).


    Google Scholar
     

  • Jansen, M. An idea for synthesis planning in solid-state chemistry. Angew. Chem. Int. Edn 41, 3746–3766 (2002).

    CAS 

    Google Scholar
     

  • Jansen, M. & Schön, J. C. “Design” in chemical synthesis—an phantasm? Angew. Chem. Int. Edn 45, 3406–3412 (2006).

    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain, A. et al. Commentary: The Supplies Venture: a supplies genome strategy to accelerating supplies innovation. APL Mater. 1, 011002 (2013).

    ADS 

    Google Scholar
     

  • Albrecht, R. & Ruck, M. Chalcogenides by discount of their dioxides in ultra-alkaline media. Angew. Chem. Int. Edn 60, 22570–22577 (2021).

    CAS 

    Google Scholar
     

  • Bugaris, D. E., Smith, M. D. & zur Loye, H.-C. Hydroflux crystal development of platinum group metallic hydroxides: Sr6NaPd2(OH)17, Li2Pt(OH)6, Na2Pt(OH)6, Sr2Pt(OH)8, and Ba2Pt(OH)8. Inorg. Chem. 52, 3836–3844 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Probability, W. M., Bugaris, D. E., Sefat, A. S. & zur Loye, H.-C. Crystal development of recent hexahydroxometallates utilizing a hydroflux. Inorg. Chem. 52, 11723–11733 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Klepov, V. V., Juillerat, C. A., Tempo, Okay. A., Morrison, G. & zur Loye, H.-C. “Smooth” alkali bromide and iodide fluxes for crystal development. Entrance. Chem. 8, 518 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mugavero III, S. J., Gemmill, W. R., Roof, I. P. & zur Loye, H.-C. Supplies discovery by crystal development: lanthanide metallic containing oxides of the platinum group metals (Ru, Os, Ir, Rh, Pd, Pt) from molten alkali metallic hydroxides. J. Strong State Chem. 182, 1950–1963 (2009).

    ADS 

    Google Scholar
     

  • Chica, D. G. et al. Direct thermal neutron detection by the 2D semiconductor 6LiInP2Se6. Nature 577, 346–349 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Effenberger, H. & Pertlik, F. Crystal construction of NaCu5S3. Monatsh. Chem. Chem. Mon. 116, 921–926 (1985).

    CAS 

    Google Scholar
     

  • Savelsberg, G. Ternäre Pnictide und Chalkogenide von Alkalimetallen und IB-bzw. IIB-Elementen/On ternary pnictides and chalkogenides of alkaline metals and IB-resp. II B-elements. Z. Naturforsch. B 33, 370–373 (1978).


    Google Scholar
     

  • Li, J., Guo, H.-Y., Zhang, X. & Kanatzidis, M. G. CsAg5Te3: a brand new metal-rich telluride with a singular tunnel construction. J. Alloys Compd. 218, 1–4 (1995).

    CAS 

    Google Scholar
     

  • Rettie, A. J. E. et al. Copper vacancies and heavy holes within the two-dimensional semiconductor KCu3−xSe2. Chem. Mater. 29, 6114–6121 (2017).

    CAS 

    Google Scholar
     

  • Näther, C., Röhnert, D. & Bensch, W. Synthesis, crystal construction and low-temperature X-ray investigations of Okay3Cu8Se6. Eur. J. Strong State Inorg. Chem. 35, 565–577 (1998).


    Google Scholar
     

  • Tiedje, O. et al. Bridging from ThCr2Si2-type supplies to hexagonal dichalcogenides: an ab initio and experimental examine of KCu2Se2. Phys. Rev. B 67, 134105 (2003).

    ADS 

    Google Scholar
     

  • Burschka, C. & Bronger, W. KCu3S2, ein neues Thiocuprat/KCu3S2, a brand new thiocuprate. Z. Naturforsch. B 32, 11–14 (1977).


    Google Scholar
     

  • Fuhr, O., Dehnen, S. & Fenske, D. Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem. Soc. Rev. 42, 1871–1906 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Shoemaker, D. P. et al. In situ research of a platform for metastable inorganic crystal development and supplies discovery. Proc. Natl Acad. Sci. USA 111, 10922–10927 (2014).

  • Schils, H. & Bronger, W. Ternäre Selenide des Kupfers. Z. Anorg. Allg. Chem. 456, 187–193 (1979).

    CAS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Verified by MonsterInsights