[ad_1]
Kim, Y.-H. et al. Multicolored natural/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).
Tan, Z.-Okay. et al. Brilliant light-emitting diodes primarily based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).
Cho, H. et al. Overcoming the electroluminescence effectivity limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).
Kim, Y.-H., Cho, H. & Lee, T.-W. Steel halide perovskite gentle emitters. Proc. Natl Acad. Sci. USA 113, 11694–11702 (2016).
Yang, X. et al. Environment friendly inexperienced light-emitting diodes primarily based on quasi-two-dimensional composition and part engineered perovskite with floor passivation. Nat. Commun. 9, 570 (2018).
Zhao, B. et al. Excessive-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 783–789 (2018).
Kim, Y.-H. et al. Complete defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15, 148–155 (2021).
Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).
Xiao, Z. et al. Environment friendly perovskite light-emitting diodes that includes nanometre-sized crystallites. Nat. Photonics 11, 108–115 (2017).
Lin, Okay. et al. Perovskite light-emitting diodes with exterior quantum effectivity exceeding 20 per cent. Nature 562, 245–248 (2018).
Kim, Y.-H., Kim, J. S. & Lee, T. Methods to enhance luminescence effectivity of steel‐halide perovskites and light-weight‐emitting diodes. Adv. Mater. 31, 1804595 (2019).
Park, M.-H. et al. Boosting effectivity in polycrystalline steel halide perovskite light-emitting diodes. ACS Power Lett. 4, 1134–1149 (2019).
Cho, H., Kim, Y.-H., Wolf, C., Lee, H.-D. & Lee, T.-W. Bettering the steadiness of steel halide perovskite supplies and light-emitting diodes. Adv. Mater. 30, 1704587 (2018).
Liu, M., Matuhina, A., Zhang, H. & Vivo, P. Advances within the stability of halide perovskite nanocrystals. Supplies 12, 3733 (2019).
Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs primarily based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).
Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. Excessive cost provider mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).
Herz, L. M. Cost-carrier mobilities in steel halide perovskites: basic mechanisms and limits. ACS Power Lett. 2, 1539–1548 (2017).
Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019).
Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of floor defects dominates ion migration in lead-halide perovskites. ACS Power Lett. 4, 779–785 (2019).
Zhang, L. et al. Suppressing ion migration allows steady perovskite light-emitting diodes with all-inorganic technique. Adv. Funct. Mater. 30, 2001834 (2020).
Ahmed, G. H., Yin, J., Bakr, O. M. & Mohammed, O. F. Successes and challenges of core/shell lead halide perovskite nanocrystals. ACS Power Lett. 6, 1340–1357 (2021).
Park, S. M., Abtahi, A., Boehm, A. M. & Graham, Okay. R. Floor ligands for methylammonium lead iodide movies: floor protection, energetics, and photovoltaic efficiency. ACS Power Lett. 5, 799–806 (2020).
Wagstaffe, M. et al. An experimental investigation of the adsorption of a phosphonic acid on the anatase TiO2 (101) floor. J. Phys. Chem. C 120, 1693–1700 (2016).
Li, F., Zhong, H., Zhao, G., Wang, S. & Liu, G. Adsorption of α-hydroxyoctyl phosphonic acid to ilmenite/water interface and its utility in flotation. Colloids Surfaces A Physicochem. Eng. Asp. 490, 67–73 (2016).
Xuan, T. et al. Extremely steady CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale 9, 15286–15290 (2017).
Kim, H. et al. Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and cut back luminance overshoot. Nat. Commun. 11, 3378 (2020).
Jeong, S.-H. et al. Characterizing the effectivity of perovskite photo voltaic cells and light-emitting diodes. Joule 4, 1206–1235 (2020).
Pazos-Outon, L. M. et al. Photon recycling in lead iodide perovskite photo voltaic cells. Science 351, 1430–1433 (2016).
Stranks, S. D., Hoye, R. L. Z., Di, D., Pal, R. H. & Deschler, F. The physics of sunshine emission in halide perovskite units. Adv. Mater. 31, 1803336 (2019).
Cho, C. et al. The position of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).
Cho, C. & Greenham, N. C. Computational examine of dipole radiation in re‐absorbing perovskite semiconductors for optoelectronics. Adv. Sci. 8, 2003559 (2021).
Track, J. et al. Over 30% exterior quantum effectivity gentle‐emitting diodes by engineering quantum dot‐assisted power degree match for gap transport layer. Adv. Funct. Mater. 29, 1808377 (2019).
Kim, Y.-H. et al. Exploiting the total benefits of colloidal perovskite nanocrystals for large-area environment friendly light-emitting diodes. Nat. Nanotechnol. 17, 590–597 (2022).
Dai, X. et al. Answer-processed, high-performance light-emitting diodes primarily based on quantum dots. Nature 515, 96–99 (2014).
Woo, S.-J., Kim, J. S. & Lee, T.-W. Characterization of stability and challenges to enhance lifetime in perovskite LEDs. Nat. Photonics 15, 630–634 (2021).
Cho, H. et al. Excessive-efficiency polycrystalline perovskite light-emitting diodes primarily based on combined cations. ACS Nano 12, 2883–2892 (2018).
Palik, E. D. & Ghosh, G. Handbook of Optical Constants of Solids (Educational Press, 1998).
[ad_2]