Monday, February 26, 2024
HomeNatureHadean isotopic fractionation of xenon retained in deep silicates

Hadean isotopic fractionation of xenon retained in deep silicates

[ad_1]

  • Anders, E. & Owen, T. Mars and Earth: origin and abundance of volatiles. Science 198, 453–465 (1977).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Krummenacher, D., Merrihue, C. M., Pepin, R. O. & Reynolds, J. H. Meteoritic krypton and barium versus the final isotopic anomalies in xenon. Geochim. Cosmochim. Acta 26, 231–249 (1962).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Swindle, T. D., Caffee, M. W. & Hohenberg, C. M. Xenon and different noble gases in shergottites. Geochim. Cosmochim. Acta 50, 1001–1015 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ozima, M. & Podosek, F. A. Formation age of Earth from 129I/127I and 244Pu/238U systematics and the lacking Xe. J. Geophys. Res. 104, 25493–25499 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Avice, G., Marty, B. & Burgess, R. The origin and degassing historical past of the Earth’s ambiance revealed by Archean xenon. Nat. Commun. 8, 15455 (2017).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Dauphas, N. & Morbidelli, A. in Geochemical and Planetary Dynamical Views on the Origin of Earth’s Ambiance and Oceans (eds Holland, H. D. & Turekian, Okay. Okay.) 115–234 (Elsevier, 2014).

  • Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hébrard, E. & Marty, B. Coupled noble gas-hydrocarbon evolution of the early Earth ambiance upon photo voltaic UV irradiation. Earth Planet. Sci. Lett. 385, 40–48 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Zahnle, Okay. J., Gaseca, M. & Catling, D. C. Unusual messenger: a brand new historical past of hydrogen on Earth, as advised by xenon. Geochim. Cosmochim. Acta 244, 56–85 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dauphas, N. The twin origin of the terrestrial ambiance. Icarus 165, 326–333 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bekaert, D. V., Broadley, M. W. & Marty, B. The origin and destiny of risky parts on Earth revisited in gentle of noble fuel information obtained from comet 67P/Churyumov–Gerasimenko. Sci. Rep. 10, 5796 (2020).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Marty, B. et al. Xenon isotopes in 67P/Churyumov–Gerasimenko present that comets contributed to Earth’s ambiance. Science 356, 1069–1072 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Piani, L. et al. Earth’s water might have been inherited from materials much like enstatite chondrite meteorites. Science 50, 1110–1113 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite fashions. Earth Planet. Sci. Lett. 293, 259–268 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Boyet, M. et al. Enstatite chondrites EL3 as constructing blocks for the Earth: the controversy over the 146Sm–142Nd systematics. Earth Planet. Sci. Lett. 214, 427–442 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Sanloup, C. Noble fuel reactivity in planetary interiors. Entrance. Phys. 8, 157 (2020).

    Article 

    Google Scholar
     

  • Dewaele, A. et al. Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 underneath stress. Nat. Chem. 8, 784–790 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Stavrou, E. et al. Synthesis of xenon and iron-nickel intermetallic compounds at Earth’s core thermodynamic circumstances. Phys. Rev. Lett. 120, 096001 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Crépisson, C., Blanchard, M., Lazzeri, M., Balan, E. & Sanloup, C. New constraints on Xe incorporation mechanisms in olivine from first-principles calculations. Geochim. Cosmochim. Acta 222, 146–155 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Probert, M. I. J. An ab initio research of xenon retention in α-quartz. J. Phys. Condens. Matter 22, 025501 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Crépisson, C. et al. The Xe-SiO2 system at average stress and excessive temperature. Geochem. Geophys. Geosyst. 20, 992–1003 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Shcheka, S. S. & Keppler, H. The origin of the terrestrial noble-gas signature. Nature 490, 531–535 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Parai, R. & Mukhopadhyay, S. Xenon isotopic constraints on the historical past of risky recycling into the mantle. Geochim. Cosmochim. Acta 560, 223–227 (2018).

    CAS 

    Google Scholar
     

  • Krantz, J. A., Parman, S. W. & Kelley, S. P. Recycling of heavy noble gases by subduction of serpentinite. Earth Planet. Sci. Lett. 521, 120–127 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble fuel composition of the mantle. Nature 441, 186–191 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Moreira, M., Kunz, J. & Allègre, C. Uncommon fuel systematics in popping rock: isotopic and elemental compositions within the higher mantle. Science 279, 1178–1181 (1998).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hennecke, E. W. & Manuel, O. Okay. Noble gases in Hawaiian xenolith. Nature 257, 778–780 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Poreda, R. J. & Farley, Okay. A. Uncommon gases in Samoan xenoliths. Earth Planet. Sci. Lett. 113, 129–144 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Czuppon, G., Matsumoto, T., Handler, M. R. & Matsuda, J.-I. Noble gases in spinel peridotite xenoliths from Mt Quincan, North Queensland, Australia: undisturbed MORB-type noble gases within the subcontinental lithospheric mantle. Chem. Geol. 266, 19–28 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kuroda, P. Okay., Sherrill, R. D. & Jackson, Okay. C. Abundances and isotopic compositions of uncommon gases in granites. Geochem. J. 11, 75–90 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Palma, R. L., Rao, M. N., Rowe, M. W. & Koeberl, C. Krypton and xenon fractionation in North American tektites. Meteor. Planet. Sci. 32, 9–14 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bekaert, D. V., Avice, G., Marty, B. & Henderson, B. Stepwise heating of lunar anorthosites 60025, 60215, 65315 presumably reveals an indigenous noble fuel part on the Moon. Geochim. Cosmochim. Acta 218, 114–1315 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Drescher, J., Kirsten, T. & Schäfer, Okay. The uncommon fuel stock of the continental crust, recovered by the KTB Continental Deep Drilling undertaking. Earth Plan. Sci. Lett. 154, 247–263 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. The lunar magma ocean: reconciling the solidification course of with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Frossard, P., Boyet, M., Bouvier, A., Hammouda, T. & Monteux, J. Proof for anorthositic crust fashioned on an internal photo voltaic system planetesimal. Geochem. Persp. Lett. 11, 28–32 (2019).

    Article 

    Google Scholar
     

  • Bouvier, L. C. et al. Proof for very fast magma ocean crystallization and crust formation on Mars. Nature 558, 586–589 (2018).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. Excessive-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim.Cosmochim. Acta 70, 164–191 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Harrison, T. M., Schmitt, A. Okay., McCulloch, M. T. & Lovera, O. M. Early (≥4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry outcomes for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–486 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Erkaev, N. V. et al. Escape of the martian protoatmosphere and preliminary water stock. Planet. Area Sci. 98, 106–119 (2014).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Tucker, J. M. & Mukhopadhyay, S. Proof for a number of magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jambon, A., Weber, H. & Braun, O. Solubility of He, Ne, Ar, Kr and Xe in a basalt soften within the vary 1250–1600 °C. Geochemical implications. Geochim. Cosmochim. Acta 50, 401–408 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Guillot, B. & Sator, N. Noble gases in high-pressure silicate liquids: a pc simulation research. Geochim. Cosmochim. Acta 80, 51–69 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Brož, M., Chrenko, O., Nesvorný, D. & Dauphas, N. Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nat. Astron. 5, 898–902 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Schlichting, H. E. & Mukhopadhyay, S. Ambiance impression losses. Area Sci. Rev. 214, 34 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Harper, C. L. Proof for 92gNb within the early photo voltaic system and analysis of a brand new p-process cosmochronometer from 92gNb/92Mo. Astrophys. J. 466, 437–456 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jaupart, E., Charnoz, S. & Moreira, M. Primordial ambiance incorporation in planetary embryos and the origin of neon in terrestrial planets. Icarus 293, 199–205 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Crépisson, C. et al. Kr setting in feldspathic glass and soften: a excessive stress, excessive temperature X-ray absorption research. Chem. Geol. 493, 525–531 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Kohara, S. et al. Relationship between topological order and glass forming capacity in densely packed enstatite and forsterite composition glasses. Proc. Natl Acad. Sci. USA 108, 14780–14785 (2011).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary supply for the ambiance. Science 326, 1522–1525 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Heber, V. S., Brooker, R. A., Kelley, S. P. & Wooden, B. J. Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim. Cosmochim. Acta 71, 1041–1061 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sanloup, C., Schmidt, B. C., Gudfinnsson, G., Dewaele, A. & Mezouar, M. Xenon and argon: a contrasting habits in olivine at depth. Geochim. Cosmochim. Acta 75, 6271–6284 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Péron, S. & Moreira, M. Onset of risky recycling into the mantle decided by xenon anomalies. Geochem. Persp. Lett. 9, 21–25 (2018).

    Article 

    Google Scholar
     

  • Tolstikhin, I. N. & O’nions, R. Okay. The Earth’s lacking xenon: a mix of early degassing and of uncommon fuel loss from the ambiance. Chem. Geol. 115, 1–6 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yokochi, R. & Marty, B. Geochemical constraints on mantle dynamics within the Hadean. Earth Planet. Sci. Lett. 238, 17–30 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sano, Y., Marty, B. & Burnard, P. in Noble Gases within the Ambiance (ed. Burnard, P.) 17–31 (Springer-Verlag, 2013).

  • Crépisson, C. ‘Lacking Xenon’: Experimental and Theoretical Research of Xe Storage in Crustal and Higher Mantle Minerals. Ph.D. thesis, Sorbonne Univ. (2018).

  • Prouteau, G., Scaillet, B., Pichavant, M. & Maury, R. Proof for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197–200 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Boettcher, S. L., Guo, Q. & Montana, A. A easy system for loading gases in high-pressure experiments. Am. Mineral. 74, 1383–1384 (1989).

    CAS 

    Google Scholar
     

  • Horlait, D. et al. A brand new thermo-desorption laser-heating setup for learning noble gases diffusion and launch from supplies at excessive temperatures. Rev. Sci. Instr. 92, 124102 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bevington, P. R. & Robinson, D. Okay. Information Discount and Error Evaluation for Bodily Sciences third edn (McGraw-Hill, 2003).

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments