[ad_1]
Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland advanced. Nature 542, 86–90 (2017).
Crezee, B. et al. Mapping peat thickness and carbon shares of the central Congo Basin utilizing discipline knowledge. Nat. Geosci. 15, 639–644 (2022).
Runge, J. in Massive Rivers (ed. Gupta, A.) 293–309 (Wiley, 2008).
Davenport, I. J. et al. First proof of peat domes within the Congo Basin utilizing LiDAR from a fixed-wing drone. Distant Sens. 12, 2196 (2020).
Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Chang. 24, 669–686 (2018).
Younger, D. M. et al. Misinterpreting carbon accumulation charges in information from near-surface peat. Sci. Rep. 9, 17939 (2019).
Younger, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary story about utilizing the obvious carbon accumulation price (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).
Sebag, D. et al. Monitoring natural matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: bulk characterization and quantification of degradation. Eur. J. Soil Sci. 57, 344–355 (2006).
Sebag, D. et al. Dynamics of soil natural matter primarily based on new Rock-Eval indices. Geoderma 284, 185–203 (2016).
Girkin, N. T. et al. Spatial variability of natural matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142, 231–245 (2019).
Dargie, G. C. Quantifying and Understanding the Tropical Peatlands of the Central Congo Basin. PhD thesis, Univ. Leeds (2015).
Spiker, E. C. & Hatcher, P. G. Carbon isotope fractionation of sapropelic natural matter throughout early diagenesis. Org. Geochem. 5, 283–290 (1984).
Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).
Dommain, R. et al. Forest dynamics and tip-up swimming pools drive pulses of excessive carbon accumulation charges in a tropical peat dome in Borneo (Southeast Asia). J. Geophys. Res. 120, 617–640 (2015).
Wotzka, H.-P. in Grundlegungen: Beiträge zur europäischen und afrikanischen Archäologie fűr Manfred Ok. H. Eggert (ed. Wotzka, H.-P.) 271–289 (Francke, 2006).
Saulieu, G. D. et al. Archaeological proof for inhabitants rise and collapse between ~2500 and ~500 cal. yr BP in Western Central Africa. Afr. Archéol. Arts 17, 11–32 (2021).
Sachse, D. et al. Molecular paleohydrology: deciphering the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).
Collins, J. A. et al. Estimating the hydrogen isotopic composition of previous precipitation utilizing leaf-waxes from western Africa. Quat. Sci. Rev. 65, 88–101 (2013).
Schefuß, E., Schouten, S. & Schneider, R. R. Climatic controls on central African hydrology through the previous 20,000 years. Nature 437, 1003–1006 (2005).
Kelly, T. J. et al. The vegetation historical past of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129–141 (2017).
Swindles, G. T. et al. Ecosystem state shifts throughout long-term improvement of an Amazonian peatland. International Change Biol. 24, 738–757 (2018).
Dommain, R., Couwenberg, J. & Joosten, H. Growth and carbon sequestration of tropical peat domes in south-east Asia: hyperlinks to post-glacial sea-level modifications and Holocene local weather variability. Quat. Sci. Rev. 30, 999–1010 (2011).
Lottes, A. L. & Ziegler, A. M. World peat incidence and the seasonality of local weather and vegetation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 106, 23–37 (1994).
Moutsamboté, J. M. Ecological, Phytogeographic and Phytosociological Examine of Northern Congo (Plateaus, Bowls, Likouala and Sangha). PhD thesis, Univ. Marien Ngouabi (2012).
Dingman, S. L. Fluvial Hydrology (W. H. Freeman, 1984).
Swindles, G. T., Morris, P. J., Baird, A. J., Blaauw, M. & Plunkett, G. Ecohydrological feedbacks confound peat-based local weather reconstructions. Geophys. Res. Lett. 39, L11401 (2012).
Morris, P. J., Baird, A. J., Younger, D. M. & Swindles, G. T. Untangling local weather alerts from autogenic modifications in long-term peatland improvement. Geophys. Res. Lett. 42, 10,788–10,797 (2015).
Younger, D. M., Baird, A. J., Morris, P. J. & Holden, J. Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resour. Res. 53, 6510–6522 (2017).
Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. Centennial scale local weather instabilities in a moist early Holocene West African monsoon. Geophys. Res. Lett. 34, L24702 (2007).
Collins, J. A. et al. Fast termination of the African Humid Interval triggered by northern high-latitude cooling. Nat. Commun. 8, 1372 (2017).
Garcin, Y. et al. Early anthropogenic influence on Western Central African rainforests 2,600 y in the past. Proc. Natl. Acad. Sci. USA 115, 3261–3266 (2018).
Vincens, A. et al. Changement majeur de la végétation du lac Sinnda (vallée du Niari, Sud-Congo) consécutif à l’assèchement climatique holocène supérieur: apport de la palynologie. C. R. Acad. Sci. Paris Sér. II 318, 1521–1526 (1994).
Elenga, H. et al. Diagramme pollinique holocène du lac Kitina (Congo): mise en évidence de changements paléobotaniques et paléoclimatiques dans le massif forestier du Mayombe. C. R. Acad. Sci. Paris Sér. II 323, 403–410 (1996).
Ngomanda, A., Neumann, Ok., Schweizer, A. & Maley, J. Seasonality change and the third millennium BP rainforest disaster in southern Cameroon (Central Africa). Quat. Res. 71, 307–318 (2009).
Maley, J. et al. Late Holocene forest contraction and fragmentation in central Africa. Quat. Res. 89, 43–59 (2018).
Bayon, G. et al. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222 (2012).
Giresse, P., Maley, J. & Chepstow-Lusty, A. Understanding the 2500 yr BP rainforest disaster in West and Central Africa within the framework of the Late Holocene: pluridisciplinary evaluation and multi-archive reconstruction. International Planet. Change 192, 103257 (2020).
Schefuß, E. et al. Hydrologic management of carbon biking and aged carbon discharge within the Congo River basin. Nat. Geosci. 9, 687–690 (2016).
Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions throughout Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020).
Deshmukh, C. S. et al. Conservation slows down emission improve from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–490 (2021).
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed historical past of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Information 9, 363–387 (2017).
Jiang, Y. et al. Widespread improve of boreal summer season dry season size over the Congo rainforest. Nat. Clim. Change 9, 617–622 (2019).
Prepare dinner, Ok. H., Liu, Y. & Vizy, E. Ok. Congo Basin drying related to poleward shifts of the African thermal lows. Clim. Dyn. 54, 863–883 (2020).
Bennett, A. C. et al. Resistance of African tropical forests to an excessive local weather anomaly. Proc. Natl. Acad. Sci. USA 118, e2003169118 (2021).
Sullivan, M. J. P. et al. Lengthy-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
García-Palacios, P. et al. Proof for big microbial-mediated losses of soil carbon beneath anthropogenic warming. Nat. Rev. Earth Environ. 2, 585–585 (2021).
Cobb, A. R. et al. How temporal patterns in rainfall decide the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl. Acad. Sci. USA 114, E5187–E5196 (2017).
Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Adjustments in rainfall seasonality within the tropics. Nat. Clim. Change 3, 811–815 (2013).
Karger, D. N. et al. Climatologies at excessive decision for the earth’s land floor areas. Sci. Information 4, 170122 (2017).
Xu, J. R., Morris, P. J., Liu, J. G. & Holden, J. PEATMAP: refining estimates of world peatland distribution primarily based on a meta-analysis. Catena 160, 134–140 (2018).
Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series evaluation. Eos Trans. AGU 77, 379 (1996).
Blaauw, M. & Christen, J. A. Versatile paleoclimate age–depth fashions utilizing an autoregressive gamma course of. Bayesian Anal. 6, 457–474 (2011).
Blaauw, M. et al. rbacon: age–depth modelling utilizing Bayesian statistics. R package deal model 2.5.7 (2021); https://cran.r-project.org/internet/packages/rbacon/index.html.
Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).
Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon 62, 725–757 (2020).
Reuter, H., Gensel, J., Elvert, M. & Zak, D. Proof for preferential protein depolymerization in wetland soils in response to exterior nitrogen availability supplied by a novel FTIR routine. Biogeosciences 17, 499–514 (2020).
Kuhry, P. & Vitt, D. H. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77, 271–275 (1996).
Hornibrook, E. R. C., Longstaffe, F. J. & Fyfe, W. S. Evolution of steady carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and different anaerobic environments. Geochim. Cosmochim. Acta 64, 1013–1027 (2000).
Broder, T., Blodau, C., Biester, H. & Knorr, Ok. H. Peat decomposition information in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479–1491 (2012).
Biester, H., Knorr, Ok. H., Schellekens, J., Basler, A. & Hermanns, Y. M. Comparability of various strategies to find out the diploma of peat decomposition in peat bogs. Biogeosciences 11, 2691–2707 (2014).
Leifeld, J., Klein, Ok. & Wüst-Galley, C. Soil natural matter stoichiometry as indicator for peatland degradation. Sci. Rep. 10, 7634 (2020).
Hodgkins, S. B. et al. Tropical peatland carbon storage linked to world latitudinal developments in peat recalcitrance. Nat. Commun. 9, 3640 (2018).
Chimner, R. A. & Ewel, Ok. C. A tropical freshwater wetland: II. Manufacturing, decomposition, and peat formation. Wetlands Ecol. Handle. 13, 671–684 (2005).
Lafargue, E., Marquis, F. & Pillot, D. Rock-Eval 6 functions in hydrocarbon exploration, manufacturing, and soil contamination research. Oil Gasoline Sci. Technol. 53, 421–437 (1998).
Behar, F., Beaumont, V. & Penteado, H. L. D. Rock-Eval 6 expertise: performances and developments. Oil Gasoline Sci. Technol. 56, 111–134 (2001).
Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C. & Sebag, D. Soil natural matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org. Geochem. 34, 327–343 (2003).
Marzi, R., Torkelson, B. E. & Olson, R. Ok. A revised carbon desire index. Org. Geochem. 20, 1303–1306 (1993).
Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1334 (1967).
Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A. & Classes, A. L. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and weather conditions. Geochim. Cosmochim. Acta 65, 213–222 (2001).
Waelbroeck, C. et al. Sea-level and deep water temperature modifications derived from benthic foraminifera isotopic information. Quat. Sci. Rev. 21, 295–305 (2002).
Han, J. & Calvin, M. Hydrocarbon distribution of algae and micro organism, and microbiological exercise in sediments. Proc. Natl. Acad. Sci. U.S.A. 64, 436–443 (1969).
Nakagawa, T. et al. Dense-media separation as a extra environment friendly pollen extraction methodology to be used with natural sediment/deposit samples: comparability with the standard methodology. Boreas 27, 15–24 (1998).
Stone, B. C. A synopsis of the African Species of Pandanus. Ann. Missouri Bot. Gard. 60, 260–272 (1973).
African Plant Database (model 3.4.0) (Conservatoire et Jardin Botaniques de la Ville de Genève and South African Nationwide Biodiversity Institute, accessed January 2022); http://africanplantdatabase.ch.
Polhill, R. M., Nordal, I., Kativu, S. & Poulsen, A. D. Flora of Tropical East Africa 1st edn (CRC Press, 1997).
Hawthorne, D. et al. International Fashionable Charcoal Dataset (GMCD): a software for exploring proxy-fire linkages and spatial patterns of biomass burning. Quat. Int. 488, 3–17 (2018).
Stevenson, J. & Haberle, S. Macro Charcoal Evaluation: A Modified Method Utilized by the Division of Archaeology and Pure Historical past. Palaeoworks Technical Paper No. 5 (PalaeoWorks, Division of Archaeology and Pure Historical past, Analysis Faculty of Pacific and Asian Research, Australian Nationwide College, 2005).
Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the Inexperienced Sahara. Sci. Adv. 3, e1601503 (2017).
Shanahan, T. M. et al. The time-transgressive termination of the African Humid Interval. Nat. Geosci. 8, 140–144 (2015).
Ladd, S. N. et al. Leaf wax hydrogen isotopes as a hydroclimate proxy within the Tropical Pacific. J. Geophys. Res. 126, e2020JG005891 (2021).
Dansgaard, W. Steady isotopes in precipitation. Tellus 16, 436–468 (1964).
Munksgaard, N. C. et al. Information Descriptor: each day observations of steady isotope ratios of rainfall within the tropics. Sci. Rep. 9, 14419 (2019).
Aggarwal, P. Ok. et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 9, 624–629 (2016).
Zwart, C. et al. The isotopic signature of monsoon situations, cloud modes, and rainfall sort. Hydrol. Processes 32, 2296–2303 (2018).
Jackson, B., Nicholson, S. E. & Klotter, D. Mesoscale convective techniques over Western Equatorial Africa and their relationship to large-scale circulation. Mon. Climate Rev. 137, 1272–1294 (2009).
Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A. & Gimeno, L. A Lagrangian perspective of the hydrological cycle within the Congo River basin. Earth Syst. Dynam. 8, 653–675 (2017).
Worldwide Atomic Vitality Company–World Meteorological Group International Community of Isotopes in Precipitation: The GNIP Database (accessed Might 2020); https://nucleus.iaea.org/wiser/index.aspx.
Sachse, D., Dawson, T. E. & Kahmen, A. Seasonal variation of leaf wax n-alkane manufacturing and δ2H values from the evergreen oak tree, Quercus agrifolia. Isotopes Environ. Well being Stud. 51, 124–142 (2015).
Huang, X., Zhao, B., Wang, Ok., Hu, Y. & Meyers, P. A. Differences due to the season of leaf wax n-alkane molecular composition and δD values in two subtropical deciduous tree species: outcomes from a three-year monitoring program in central China. Org. Geochem. 118, 15–26 (2018).
Botev, Z. I., Grotowski, J. F. & Kroese, D. P. Kernel density estimation through diffusion. Ann. Stat. 38, 2916–2957 (2010).
Albrecht, R., Sebag, D. & Verrecchia, E. Natural matter decomposition: bridging the hole between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR). Biogeochemistry 122, 101–111 (2015).
Matteodo, M. et al. Decoupling of topsoil and subsoil controls on natural matter dynamics within the Swiss Alps. Geoderma 330, 41–51 (2018).
Malou, O. P. et al. The Rock-Eval® signature of soil natural carbon in arenosols of the Senegalese groundnut basin. How do agricultural practices matter? Agr. Ecosyst. Environ. 301, 107030 (2020).
Thoumazeau, A. et al. A brand new in-field indicator to evaluate the influence of land administration on soil carbon dynamics. Geoderma 375, 114496 (2020).
Cranwell, P. A. Diagenesis of free and sure lipids in terrestrial detritus deposited in a lacustrine sediment. Org. Geochem. 3, 79–89 (1981).
Ofiti, N. O. E. et al. Warming promotes lack of subsoil carbon by way of accelerated degradation of plant-derived natural matter. Soil Biol. Biochem. 156, 108185 (2021).
Stuiver, M. & Reimer, P. J. Prolonged 14C knowledge base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–230 (1993).
[ad_2]