Wednesday, March 8, 2023
HomeNatureLiver tumour immune microenvironment subtypes and neutrophil heterogeneity

Liver tumour immune microenvironment subtypes and neutrophil heterogeneity

[ad_1]

  • Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for efficient remedy. Nat. Med. 24, 541–550 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorsson, V. et al. The immune panorama of most cancers. Immunity 48, 812–830 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. The immunological and metabolic panorama in major and metastatic liver most cancers. Nat. Rev. Most cancers 21, 541–557 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Marquardt, J. U., Andersen, J. B. & Thorgeirsson, S. S. Practical and genetic deconstruction of the mobile origin in liver most cancers. Nat. Rev. Most cancers 15, 653–667 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Coffelt, S. B., Wellenstein, M. D. & de Visser, Okay. E. Neutrophils in most cancers: impartial no extra. Nat. Rev. Most cancers 16, 431–446 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Jaillon, S. et al. Neutrophil range and plasticity in tumour development and remedy. Nat. Rev. Most cancers 20, 485–503 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Shaul, M. E. & Fridlender, Z. G. Tumour-associated neutrophils in sufferers with most cancers. Nat. Rev. Clin. Oncol. 16, 601–620 (2019).

    PubMed 

    Google Scholar
     

  • Ng, L. G., Ostuni, R. & Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol. 19, 255–265 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Quail, D. F. et al. Neutrophil phenotypes and features in most cancers: a consensus assertion. J. Exp. Med. 219, e20220011 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, C. et al. Neutrophil elastase selectively kills most cancers cells and attenuates tumorigenesis. Cell 184, 3163–3177 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ponzetta, A. et al. Neutrophils driving unconventional T cells mediate resistance towards murine sarcomas and chosen human tumors. Cell 178, 346–360 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. DNA of neutrophil extracellular traps promotes most cancers metastasis by way of CCDC25. Nature 583, 133–138 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to allow cell cycle development. Nature 566, 553–557 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Panorama and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845(2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377–394 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ma, L. et al. Single-cell atlas of tumor cell evolution in response to remedy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 75, 1397–1408 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ma, L. et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver most cancers. Most cancers Cell 36, 418–430 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, Y. et al. Single-cell panorama of the ecosystem in early-relapse hepatocellular carcinoma. Cell 184, 404–421 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, C. et al. Panorama of infiltrating t cells in liver most cancers revealed by single-cell sequencing. Cell 169, 1342–1356 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Single-cell transcriptomic structure and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J. Hepatol. 73, 1118–1130 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and an infection. Nat. Immunol. 21, 1119–1133 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations throughout people and species. Immunity 50, 1317–1334 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bagaev, A. et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Most cancers Cell 39, 845–865 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon most cancers. Cell 181, 442–459 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kiss, M. et al. IL1β promotes immune suppression within the tumor microenvironment impartial of the inflammasome and gasdermin D. Most cancers Immunol. Res. 9, 309–323 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Feig, C. et al. Focusing on CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic most cancers. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Most cancers Genome Atlas Analysis Community. Complete and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341 (2017).


    Google Scholar
     

  • Farshidfar, F. et al. Integrative genomic evaluation of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 18, 2780–2794 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, R. et al. Genomic and transcriptomic profiling of mixed hepatocellular and intrahepatic cholangiocarcinoma reveals distinct molecular subtypes. Most cancers Cell 35, 932–947 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, R. et al. Complete evaluation of spatial structure in major liver most cancers. Sci. Adv. 7, eabg3750 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, X. et al. IDH mutation subgroup standing associates with intratumor heterogeneity and the tumor microenvironment in intrahepatic cholangiocarcinoma. Adv. Sci. 8, e2101230 (2021).


    Google Scholar
     

  • Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramachandran, P., Matchett, Okay. P., Dobie, R., Wilson-Kanamori, J. R. & Henderson, N. C. Single-cell applied sciences in hepatology: new insights into liver biology and illness pathogenesis. Nat. Rev. Gastroenterol. Hepatol. 17, 457–472 (2020).

    PubMed 

    Google Scholar
     

  • Wculek, S. Okay. & Malanchi, I. Neutrophils help lung colonization of metastasis-initiating breast most cancers cells. Nature 528, 413–417 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boivin, G. et al. Sturdy and managed depletion of neutrophils in mice. Nat. Commun. 11, 2762 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Remmerie, A. et al. Osteopontin expression identifies a subset of recruited macrophages distinct from kupffer cells within the fatty liver. Immunity 53, 641–657 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, A. X. et al. Molecular correlates of scientific response and resistance to atezolizumab together with bevacizumab in superior hepatocellular carcinoma. Nat. Med. 28, 1599–1611 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Seehawer, M. et al. Necroptosis microenvironment directs lineage dedication in liver most cancers. Nature 562, 69–75 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression knowledge. Nat. Biotechnol. 33, 495–502 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression knowledge evaluation. Genome Biol. 19, 15 (2018).

    PubMed 

    Google Scholar
     

  • Puram, S. V. et al. Single-cell transcriptomic evaluation of major and metastatic tumor ecosystems in head and neck most cancers. Cell 171, 1611–1624 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muhl, L. et al. Single-cell evaluation uncovers fibroblast heterogeneity and standards for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aran, D. et al. Reference-based evaluation of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in people. Nature 563, 347–353 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulati, G. S. et al. Single-cell transcriptional range is a trademark of developmental potential. Science 367, 405–411 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Single-cell mRNA quantification and differential evaluation with Census. Nat. Strategies 14, 309–315 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lange, M. et al. CellRank for directed single-cell destiny mapping. Nat. Strategies 19, 159–170 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aibar, S. et al. SCENIC: single-cell regulatory community inference and clustering. Nat. Strategies 14, 1083–1086 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts options of mind cell id. Cell 177, 1873–1887 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schürch, C. M. et al. Coordinated mobile neighborhoods orchestrate antitumoral immunity on the colorectal most cancers invasive entrance. Cell 182, 1341–1359 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, Y. et al. Focusing on a number of cell dying pathways extends the shelf life and preserves the operate of human and mouse neutrophils for transfusion. Sci. Transl. Med. 13, eabb1069 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Verified by MonsterInsights