Friday, March 29, 2024
HomeNatureLocomotion prompts PKA by way of dopamine and adenosine in striatal neurons

Locomotion prompts PKA by way of dopamine and adenosine in striatal neurons

[ad_1]

  • Graybiel, A. M., Aosaki, T., Flaherty, A. W. & Kimura, M. The basal ganglia and adaptive motor management. Science 265, 1826–1831 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mink, J. W. The basal ganglia: targeted choice and inhibition of competing motor applications. Prog. Neurobiol. 50, 381–425 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection methods by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klaus, A., Alves Da Silva, J. & Costa, R. M. What, if, and when to maneuver: basal ganglia circuits and self-paced motion initiation. Annu. Rev. Neurosci. 42, 459–483 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreitzer, A. C. & Malenka, R. C. Striatal plasticity and basal ganglia circuit operate. Neuron 60, 543–554 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tritsch, N. X. & Sabatini, B. L. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasuda, R. et al. Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat. Neurosci. 9, 283–291 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Yellen, G. & Mongeon, R. Quantitative two-photon imaging of fluorescent biosensors. Curr. Opin. Chem. Biol. 27, 24–30 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L. et al. A extremely delicate A-kinase exercise reporter for imaging neuromodulatory occasions in awake mice. Neuron 99, 665–679.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, W. et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369, eabb0556 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic management of basal ganglia circuitry. Nature 466, 622–626 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yttri, E. A. & Dudman, J. T. Opponent and bidirectional management of motion velocity within the basal ganglia. Nature 533, 402–406 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redgrave, P. et al. Aim-directed and routine management within the basal ganglia: implications for Parkinson’s illness. Nat. Rev. Neurosci. 11, 760–772 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeLong, M. R. & Wichmann, T. Circuits and circuit issues of the basal ganglia. Arch. Neurol. 64, 20–24 (2007).

    PubMed 

    Google Scholar
     

  • Surmeier, D. J., Plotkin, J. & Shen, W. Dopamine and synaptic plasticity in dorsal striatal circuits controlling motion choice. Curr. Opin. Neurobiol. 19, 621–628 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovinger, D. M. Neurotransmitter roles in synaptic modulation, plasticity and studying within the dorsal striatum. Neuropharmacology 58, 951–961 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howe, M. W. & Dombeck, D. A. Speedy signalling in distinct dopaminergic axons throughout locomotion and reward. Nature 535, 505–510 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicola, S. M., James Surmeier, D. & Malenka, R. C. Dopaminergic modulation of neuronal excitability within the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185–215 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Lahiri, A. Okay. & Bevan, M. D. Dopaminergic transmission quickly and persistently enhances excitability of D1 receptor-expressing striatal projection neurons. Neuron 106, 277–290.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Tendencies Neurosci. 30, 228–235 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Shen, W., Flajolet, M., Greengard, P. & Surmeier, D. J. Dichotomous dopaminergic management of striatal synaptic plasticity. Science 321, 848–851 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fink, J. S. et al. Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Mol. Mind. Res. 14, 186–195 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Morelli, M., Simola, N., Popoli, P. & Carta, A. R. in Handbook of Basal Ganglia Construction and Operate 1st edn, Vol. 20 (eds Steiner, H. & Tseng, Okay. Y.) 201–218 (Elsevier, 2016).

  • Schiffmann, S. N., Fisone, G., Moresco, R., Cunha, R. A. & Ferré, S. Adenosine A2A receptors and basal ganglia physiology. Prog. Neurobiol. 83, 277–292 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higley, M. J. & Sabatini, B. L. Aggressive regulation of synaptic Ca2+ inflow by D2 dopamine and A2A adenosine receptors. Nat. Neurosci. 13, 958–966 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. & Zhou, F. M. cAMP-producing chemogenetic and adenosine A2a receptor activation inhibits the inwardly rectifying potassium present in striatal projection neurons. Neuropharmacology 148, 229–243 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ledent, C. et al. Aggressiveness, hypoalgesia and hypertension in mice missing the adenosine A2a receptor. Nature 388, 674–678 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, H. Y. et al. A essential position of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor exercise as revealed by reverse phenotypes of striatum and forebrain A2A receptor knock-outs. J. Neurosci. 28, 2970–2975 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, C., Gupta, J., Chen, J. F. & Yin, H. H. Genetic deletion of A2A adenosine receptors within the striatum selectively impairs behavior formation. J. Neurosci. 29, 15100–15103 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopes, C. R., Lourenço, V. S., Tomé, Â. R., Cunha, R. A. & Canas, P. M. Use of knockout mice to discover CNS results of adenosine. Biochem. Pharmacol. 187, 114367 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Fisone, G., Borgkvist, A. & Usiello, A. Caffeine as a psychomotor stimulant: mechanism of motion. Cell. Mol. Life Sci. 61, 857–872 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Emson, P. C., Waldvogel, H. J. & Faull, R. L. M. in Handbook of Basal Ganglia Construction and Operate 1st edn, Vol. 20 (eds Steiner, H. & Tseng, Okay. Y.) 75–96 (Elsevier, 2010).

  • Massengill, C. I., Day-Cooney, J., Mao, T. & Zhong, H. Genetically encoded sensors in the direction of imaging cAMP and PKA exercise in vivo. J. Neurosci. Strategies 362, 109298 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. J. et al. Cell-type-specific asynchronous modulation of PKA by dopamine in studying. Nature 590, 451–456 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. X. et al. Hypothalamic dopamine neurons inspire mating by way of persistent cAMP signalling. Nature 597, 245–249 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goto, A. et al. Circuit-dependent striatal PKA and ERK signaling underlies fast behavioral shift in mating response of male mice. Proc. Natl Acad. Sci. USA 112, 6718–6723 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grace, A. A. & Bunney, B. S. The management of firing sample in nigral dopamine neurons: single spike firing. J. Neurosci. 4, 2866–2876 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marinelli, M. & McCutcheon, J. E. Heterogeneity of dopamine neuron exercise throughout traits and states. Neuroscience 282, 176–197 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Adamantidis, A. R. et al. Optogenetic interrogation of dopaminergic modulation of the a number of phases of reward-seeking habits. J. Neurosci. 31, 10829–10835 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Da Silva, J. A., Tecuapetla, F., Paixão, V. & Costa, R. M. Dopamine neuron exercise earlier than motion initiation gates and invigorates future actions. Nature 554, 244–248 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Dalton, G. D. & Dewey, W. L. Protein kinase inhibitor peptide (PKI): A household of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase operate. Neuropeptides 40, 23–34 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, W., Ma, L., Yang, G. & Gan, W. B. REM sleep selectively prunes and maintains new synapses in improvement and studying. Nat. Neurosci. 20, 427–437 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paukert, M. et al. Norepinephrine controls astroglial responsiveness to native circuit exercise. Neuron 82, 1263–1270 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, B. M. et al. Dopamine launch in nucleus accumbens is underneath tonic inhibition by adenosine A1 receptors regulated by astrocytic ENT1 and dysregulated by ethanol. J. Neurosci. 42, 1738–1751 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, J. G. et al. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 557, 177–182 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, G. et al. Concurrent activation of striatal direct and oblique pathways throughout motion initiation. Nature 494, 238–242 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbera, G. et al. Spatially compact neural clusters within the dorsal striatum encode locomotion related data. Neuron 92, 202–213 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobbs, L. Okay. Okay. et al. Dopamine regulation of lateral inhibition between striatal neurons gates the stimulant actions of cocaine. Neuron 90, 1100–1113 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beaulieu, J. M. & Gainetdinov, R. R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182–217 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Domenici, M. R. et al. Adenosine A2A receptor as potential therapeutic goal in neuropsychiatric issues. Pharmacol. Res. 147, 104338 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Pologruto, T. A., Sabatini, B. L. & Svoboda, Okay. ScanImage: versatile software program for working laser scanning microscopes. Biomed. Eng. On-line 2, 13 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levene, M. J., Dombeck, D. A., Kasischke, Okay. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep mind tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    PubMed 

    Google Scholar
     

  • Jung, J. C., Mehta, A. D., Aksay, E., Stepnoski, R. & Schnitzer, M. J. In vivo mammalian mind imaging utilizing one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

    PubMed 

    Google Scholar
     

  • Melander, J. B. et al. Distinct in vivo dynamics of excitatory synapses onto cortical pyramidal neurons and parvalbumin-positive interneurons. Cell Rep. 37, 109972 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Z. et al. A delicate GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 110, 770–782.e5 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Franklin, Okay. B. J. & Paxinos, G. The Mouse Mind in Stereotaxic Coordinates (Educational Press, 2007).

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments