[ad_1]
Amin, M.B. et al. The Eighth Version AJCC Most cancers Staging Handbook: persevering with to construct a bridge from a population-based to a extra “customized” strategy to most cancers staging. CA 67, 93–99 (2017).
Shimokawa, M. et al. Visualization and focusing on of LGR5+ human colon most cancers stem cells. Nature 545, 187–192 (2017).
de Sousa e Melo, F. et al. A definite position for Lgr5+ stem cells in main and metastatic colon most cancers. Nature 543, 676–680 (2017).
Cortina, C. et al. A genome modifying strategy to check most cancers stem cells in human tumors. EMBO Mol. Med. 9, 869–879 (2017).
Calon, A. et al. Dependency of colorectal most cancers on a TGF-β-driven program in stromal cells for metastasis initiation. Most cancers Cell 22, 571–584 (2012).
Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal most cancers. Nat. Genet. 47, 320–329 (2015).
Isella, C. et al. Stromal contribution to the colorectal most cancers transcriptome. Nat. Genet. 47, 312–319 (2015).
Lee, H.-O. et al. Lineage-dependent gene expression applications affect the immune panorama of colorectal most cancers. Nat. Genet. 52, 594–603 (2020).
Guinney, J. et al. The consensus molecular subtypes of colorectal most cancers. Nat. Med. 21, 1350–1356 (2015).
Raghavan, S. et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic most cancers. Cell 184, 6119–6137 (2021).
Joanito, I. et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal most cancers. Nat. Genet. 54, 963–975 (2022).
Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon most cancers metastasis. Nature 554, 538–543 (2018).
Massagué, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016).
Barriga, F. M. et al. Mex3a marks a slowly dividing subpopulation of Lgr5+ intestinal stem cells. Cell Stem Cell 20, 801–816 (2017).
Lange, M. et al. CellRank for directed single-cell destiny mapping. Nat. Strategies 19, 159–170 (2022).
Álvarez-Varela, A. et al. Mex3a marks drug-tolerant persister colorectal most cancers cells that mediate relapse after chemotherapy. Nat. Most cancers 3, 1052–1070 (2022).
Tyler, M. & Tirosh, I. Decoupling epithelial-mesenchymal transitions from stromal profiles by integrative expression evaluation. Nat. Commun. 12, 2592 (2021).
Grigore, A. D., Jolly, M. Okay., Jia, D., Farach-Carson, M. C. & Levine, H. Tumor budding: the title is EMT. Partial EMT. J. Clin. Med. 5, 51 (2016).
Roa-Peña, L. et al. Keratin 17 identifies essentially the most deadly molecular subtype of pancreatic most cancers. Sci. Rep. 9, 11239 (2019).
Durgan, J. et al. SOS1 and Ras regulate epithelial tight junction formation within the human airway by way of EMP1. EMBO Rep. 16, 87–96 (2015).
Bangsow, T. et al. The epithelial membrane protein 1 is a novel tight junction protein of the blood-brain barrier. J. Cereb. Blood Stream Metab. 28, 1249–1260 (2008).
Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast most cancers metastasis. Cell 158, 1110–1122 (2014).
Barry, E. R. et al. Restriction of intestinal stem cell growth and the regenerative response by YAP. Nature 493, 106–110 (2013).
Cheung, P. et al. Regenerative reprogramming of the intestinal stem cell state through hippo signaling suppresses metastatic colorectal most cancers. Cell Stem Cell 27, 590–604 (2020).
Vasquez, E. G. et al. Dynamic and adaptive most cancers stem cell inhabitants admixture in colorectal neoplasia. Cell Stem Cell 29, 1213–1228 (2022).
Han, T. et al. Lineage reversion drives WNT independence in intestinal most cancers. Most cancers Discov. 10, 1590–1609 (2020).
Lupo, B. et al. Colorectal most cancers residual illness at maximal response to EGFR blockade shows a druggable Paneth cell-like phenotype. Sci. Transl. Med. 12, eaax8313 (2020).
Heinz, M. C. et al. Liver colonization by colorectal most cancers metastases requires YAP-controlled plasticity on the micrometastatic stage. Most cancers Res. 82, 1953–1968 (2022).
Solé, L. et al. p53 wild-type colorectal most cancers cells that specific a fetal gene signature are related to metastasis and poor prognosis. Nat. Commun. 13, 2866 (2022).
Ohta, Y. et al. Cell-matrix interface regulates dormancy in human colon most cancers stem cells. Nature 680, 784–794 (2022).
Mustata, R. C. et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 5, 421–432 (2013).
Wang, Y. et al. Complete molecular characterization of the hippo signaling pathway in most cancers. Cell Rep. 25, 1304–1317 (2018).
Yuan, Y. et al. YAP1/TAZ-TEAD transcriptional networks keep pores and skin homeostasis by regulating cell proliferation and limiting KLF4 exercise. Nat. Commun. 11, 1472 (2020).
Morral, C. et al. Zonation of ribosomal DNA transcription defines a stem cell hierarchy in colorectal most cancers. Cell Stem Cell 26, 845–861 (2020).
Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).
Fumagalli, A. et al. Plasticity of Lgr5-negative most cancers cells drives metastasis in colorectal most cancers. Cell Stem Cell 26, 569–578 (2020).
Ganesh, Okay. et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal most cancers. Nat. Most cancers 1, 28–45 (2020).
Padmanaban, V. et al. E-cadherin is required for metastasis in a number of fashions of breast most cancers. Nature 573, 439–444 (2019).
Chalabi, M. et al. Neoadjuvant immunotherapy results in pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).
Matano, M. et al. Modeling colorectal most cancers utilizing CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).
Drost, J. et al. Sequential most cancers mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).
Céspedes, M. V. et al. Orthotopic microinjection of human colon most cancers cells in nude mice induces tumor foci in all clinically related metastatic websites. Am. J. Pathol. 170, 1077–1085 (2007).
Chen, Y.-C. et al. Intestine fecal microbiota transplant in a mouse mannequin of orthotopic rectal most cancers. Entrance. Oncol. 10, 568012 (2020).
Conti, S. et al. CAFs and most cancers cells co-migration in 3D spheroid invasion assay. Strategies Mol. Biol. 2179, 243–256 (2020).
Gonzalez-Roca, E. et al. Correct expression profiling of very small cell populations. PLoS ONE 5, e14418 (2010).
Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: quick processing of NGS alignment codecs. Bioinformatics 31, 2032–2034 (2015).
Liao, Y., Smyth, G. Okay. & Shi, W. The R package deal Rsubread is simpler, quicker, cheaper and higher for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).
Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).
Bolstad, B. M. et al. in Bioinformatics and Computational Biology Options Utilizing R and Bioconductor (eds Gentleman, R. et al.) (Springer, 2005).
Fridlyand, J. Microarray Knowledge Evaluation. in Chosen Works in Chance and Statistics (ed Dudoit, S.) https://doi.org/10.1007/978-1-4614-1347-9_15 (Springer, 2012).
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray research. Nucleic Acids Res. 43, e47 (2015).
Eklund, A. C. & Szallasi, Z. Correction of technical bias in scientific microarray information improves concordance with recognized organic data. Genome Biol. 9, R26 (2008).
Wu, D. et al. ROAST: rotation gene set assessments for complicated microarray experiments. Bioinformatics 26, 2176–2182 (2010).
Efron, B. & Tibshirani, R. On testing the importance of units of genes. Ann. Appl. Stat. 1, 107–129 (2007).
Lee, E., Chuang, H. Y., Kim, J. W., Ideker, T. & Lee, D. Inferring pathway exercise towards exact illness classification. PLoS Comput. Biol. 4, e1000217 (2008).
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
Hao, Y. et al. Built-in evaluation of multimodal single-cell information. Cell 184, 3573–3587 (2021).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression information. Nat. Biotechnol. 33, 495–502 (2015).
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic information throughout totally different situations, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).
Stuart, T. et al. Complete integration of single-cell information. Cell 177, 1888–1902 (2019).
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq information utilizing regularized damaging binomial regression. Genome Biol. 20, 296 (2019).
van Dijk, D. et al. Recovering gene interactions from single-cell information utilizing information diffusion. Cell 174, 716–729 (2018).
Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based strategy for deciphering genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. zUMIs—a quick and versatile pipeline to course of RNA sequencing information with UMIs. Gigascience 7, giy059 (2018).
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states by way of dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
R Core Group. R: A Language and Surroundings for Statistical Computing (R Basis for Statistical Computing, 2020).
Barrett, T. & Edgar, R. [19] Gene Expression Omnibus: microarray information storage, submission, retrieval, and evaluation. Strategies Enzymol. 411, 352–369 (2006).
Grossman, R. L. et al. Towards a shared imaginative and prescient for most cancers genomic information. N. Engl. J. Med. 375, 1109–1112 (2016).
Muzny, D. M. et al. Complete molecular characterization of human colon and rectal most cancers. Nature 487, 330–337 (2012).
Tripathi, M. Okay. et al. Nuclear issue of activated T-cell exercise is related to metastatic capability in colon most cancers. Most cancers Res. 74, 6947–6957 (2014).
Sanz-Pamplona, R. et al. Aberrant gene expression in mucosa adjoining to tumor reveals a molecular crosstalk in colon most cancers. Mol. Most cancers 13, 46 (2014).
Kemper, Okay. et al. Mutations within the Ras-Raf axis underlie the prognostic worth of CD133 in colorectal most cancers. Clin. Most cancers Res. 18, 3132–3141 (2012).
Jorissen, R. N. et al. Metastasis-associated gene expression modifications predict poor outcomes in sufferers with dukes stage B and C colorectal most cancers. Clin. Most cancers Res. 15, 7642–7651 (2009).
Marisa, L. et al. Gene expression classification of colon most cancers into molecular subtypes: characterization, validation, and prognostic worth. PLoS Med. 10, e1001453 (2013).
Laibe, S. et al. A seven-gene signature aggregates a subgroup of stage II colon cancers with stage III. OMICS 16, 560–565 (2012).
Jorissen, R. N. et al. DNA copy-number alterations underlie gene expression variations between microsatellite secure and unstable colorectal cancers. Clin. Most cancers Res. 14, 8061–8069 (2008).
Azzalini, A. & Menardi, G. Clustering through nonparametric density estimation: the R package deal pdfcluster. J. Stat. Softw. 57, 1–26 (2014).
Azzalini, A. & Torelli, N. Clustering through nonparametric density estimation. Stat. Comput. 17, 71–80 (2007).
Smedley, D. et al. The BioMart neighborhood portal: an progressive different to giant, centralized information repositories. Nucleic Acids Res. 43, W589–W598 (2015).
Drost, H. G. & Paszkowski, J. Biomartr: genomic information retrieval with R. Bioinformatics 33, 1216–1217 (2017).
Li, B. & Dewey, C. N. RSEM: correct transcript quantification from RNA-seq information with or with no reference genome. BMC Bioinform. 12, 323 (2011).
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Becoming linear mixed-effects fashions utilizing lme4. J. Stat. Softw. 67, 1–48 (2015).
Therneau, T. M., Grambsch, P. M. & Pankratz, V. S. Penalized survival fashions and frailty. J. Comput. Graph. Stat. 12, 156–175 (2003).
Therneau, T. coxme: blended results Cox fashions. R package deal model 2.2-3 www.cran.R-project.org/package deal=coxme.Oikos (2012).
Sanchez-Vega, F. et al. Oncogenic signaling pathways within the Most cancers Genome Atlas. Cell 173, 321–337 (2018).
Mootha, V. Okay. et al. PGC-1α-responsive genes concerned in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
[ad_2]