Wednesday, March 8, 2023
HomeNatureOdour movement sensing enhances navigation of complicated plumes

Odour movement sensing enhances navigation of complicated plumes

[ad_1]

  • Murlis, J., Willis, M. A. & Cardé, R. T. Spatial and temporal constructions of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211–222 (2000).

    CAS 

    Google Scholar
     

  • Riffell, J. A., Abrell, L. & Hildebrand, J. G. Bodily processes and real-time chemical measurement of the insect olfactory surroundings. J. Chem. Ecol. 34, 837–853 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celani, A., Villermaux, E. & Vergassola, M. Odor landscapes in turbulent environments. Phys. Rev. X 4, 041015 (2014).


    Google Scholar
     

  • Connor, E. G., McHugh, M. Ok. & Crimaldi, J. P. Quantification of airborne odor plumes utilizing planar laser-induced fluorescence. Exp. Fluids 59, 137 (2018).

  • Jung, S. H., Hueston, C. & Bhandawat, V. Odor-identity dependent motor packages underlie behavioral responses to odors. eLife 4, e11092 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez-Salvado, E. et al. Elementary sensory-motor transformations underlying olfactory navigation in strolling fruit-flies. eLife 7, e37815 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanzaki, R., Sugi, N. & Shibuya, T. Self-generated zigzag turning of Bombyx mori males throughout pheromone-mediated upwind strolling. Zool. Sci. 9, 515–527 (1992).


    Google Scholar
     

  • Mafra-Neto, A. & Cardé, R. T. Tremendous-scale construction of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • van Breugel, F. & Dickinson, M. H. Plume-tracking conduct of flying Drosophila emerges from a set of distinct sensory-motor reflexes. Curr. Biol. 24, 274–286 (2014).

    PubMed 

    Google Scholar
     

  • Demir, M., Kadakia, N., Anderson, H. D., Clark, D. A. & Emonet, T. Strolling Drosophila navigate complicated plumes utilizing stochastic selections biased by the timing of odor encounters. eLife 9, e57524 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vickers, N. J. & Baker, T. C. Reiterative responses to single strands of odor promote sustained upwind flight and odor supply location by moths. Proc. Natl Acad. Sci. USA 91, 5756–5760 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budick, S. A. & Dickinson, M. H. Free-flight responses of Drosophila melanogaster to enticing odors. J. Exp. Biol. 209, 3001–3017 (2006).

    PubMed 

    Google Scholar
     

  • Suver, M. P. et al. Encoding of wind path by central neurons in Drosophila. Neuron 102, 828–842 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flügge, C. Geruchliche raumorientierung von Drosophila melanogaster. J. Comp. Physiol. A 20, 463–500 (1934).


    Google Scholar
     

  • Kennedy, J. S. & Marsh, D. Pheromone-regulated anemotaxis in flying moths. Science 184, 999–1001 (1974).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassenstein, B. & Reichardt, W. Z. Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Z. Naturforsch. 11, 513–524 (1956).


    Google Scholar
     

  • Gaudry, Q., Hong, E. J., Kain, J., de Bivort, B. L. & Wilson, R. I. Uneven neurotransmitter launch permits fast odour lateralization in Drosophila. Nature 493, 424–428 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duistermars, B. J., Chow, D. M. & Frye, M. A. Flies require bilateral sensory enter to trace odor gradients in flight. Curr. Biol. 19, 1301–1307 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, G. I. Diffusion by steady actions. Proc. Lond. Math. Soc. 20, 196–212 (1922).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Klapoetke, N. C. et al. Unbiased optical excitation of distinct neural populations. Nat. Strategies 11, 338–346 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, J. S. & Wilson, R. I. Habits reveals selective summation and max pooling amongst olfactory processing channels. Neuron 91, 425–438 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeAngelis, B. D., Zavatone-Veth, J. A., Gonzalez-Suarez, A. D. & Clark, D. A. Spatiotemporally exact optogenetic activation of sensory neurons in freely strolling Drosophila. eLife 9, e54183 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semmelhack, J. L. & Wang, J. W. Choose Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459, 218–223 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y., Chen, Ok., Ye, Y., Zhang, T. & Zhou, W. People navigate with stereo olfaction. Proc. Natl Acad. Sci. USA 117, 16065–16071 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhandawat, V., Maimon, G., Dickinson, M. H. & Wilson, R. I. Olfactory modulation of flight in Drosophila is delicate, selective and fast. J. Exp. Biol. 213, 3625–3635 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salazar-Gatzimas, E. et al. Direct measurement of correlation responses in Drosophila elementary movement detectors reveals quick timescale tuning. Neuron 92, 227–239 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bours, R. J., Kroes, M. C. & Lankheet, M. J. Sensitivity for reverse-phi movement. Imaginative and prescient Res. 49, 1–9 (2009).

    PubMed 

    Google Scholar
     

  • Tuthill, J. C., Chiappe, M. E. & Reiser, M. B. Neural correlates of illusory movement notion in Drosophila. Proc. Natl Acad. Sci. USA 108, 9685–9690 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orger, M. B., Smear, M. C., Anstis, S. M. & Baier, H. Notion of Fourier and non-Fourier movement by larval zebrafish. Nat. Neurosci. 3, 1128–1133 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Livingstone, M. S., Pack, C. C. & Born, R. T. Two-dimensional substructure of MT receptive fields. Neuron 30, 781–793 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Anstis, S. M. & Rogers, B. J. Illusory reversal of visible depth and motion throughout adjustments of distinction. Imaginative and prescient Res. 15, 957–961 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Q. & Victor, J. D. A set of high-order spatiotemporal stimuli that elicit movement and reverse-phi percepts. J. Vis. 10, 9 (2010).

    PubMed 

    Google Scholar
     

  • Clark, D. A. et al. Flies and people share a movement estimation technique that exploits pure scene statistics. Nat. Neurosci. 17, 296–303 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeanne, J. M. & Wilson, R. I. Convergence, divergence, and reconvergence in a feedforward community improves neural velocity and accuracy. Neuron 88, 1014–1026 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorur-Shandilya, S., Demir, M., Lengthy, J., Clark, D. A. & Emonet, T. Olfactory receptor neurons use acquire management and complementary kinetics to encode intermittent odorant stimuli. eLife 6, e27670 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhandawat, V., Olsen, S. R., Gouwens, N. W., Schlief, M. L. & Wilson, R. I. Sensory processing within the Drosophila antennal lobe will increase reliability and separability of ensemble odor representations. Nat. Neurosci. 10, 1474–1482 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drix, D. & Schmuker, M. Resolving quick fuel transients with metallic oxide sensors. ACS Sensors 6, 688–692 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, D., Burgues, J. & Marco, S. Quick Measurements with MOX Sensors: a least-squares strategy to blind deconvolution. Sensors 19, 4029 (2019).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kowadlo, G. & Russell, R. A. Robotic odor localization: a taxonomy and survey. Int. J. Robotic. Res. 27, 869–894 (2008).


    Google Scholar
     

  • Burgues, J., Hernandez, V., Lilienthal, A. J. & Marco, S. Smelling nano aerial car for fuel supply localization and mapping. Sensors 19, 478 (2019).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Boie, S. D. et al. Info-theoretic evaluation of lifelike odor plumes: What cues are helpful for figuring out location? PLoS Comput. Biol. 14, e1006275 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayaram, V., Kadakia, N. & Emonet, T. Sensing complementary temporal options of odor indicators enhances navigation of various turbulent plumes. eLife 11, e72415 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy, G., Murthy, V. N. & Vergassola, M. Olfactory sensing and navigation in turbulent environments. Annu. Rev. Conden. Matter Phys. 13, 191–213 (2022).

    ADS 

    Google Scholar
     

  • Sreenivasan, Ok. R. Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116, 18175–18183 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jefferis, G. S. et al. Complete maps of Drosophila greater olfactory facilities: spatially segregated fruit and pheromone illustration. Cell 128, 1187–1203 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ackels, T. et al. Quick odour dynamics are encoded within the olfactory system and information behaviour. Nature 593, 558–563 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martelli, C., Carlson, J. R. & Emonet, T. Depth invariant dynamics and odor-specific latencies in olfactory receptor neuron response. J. Neurosci. 33, 6285–6297 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shusterman, R., Smear, M. C., Koulakov, A. A. & Rinberg, D. Exact olfactory responses tile the sniff cycle. Nat. Neurosci. 14, 1039–1044 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, I. J. et al. Neurally encoding time for olfactory navigation. PLoS Comput. Biol. 12, e1004682 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagel, Ok. I., Hong, E. J. & Wilson, R. I. Synaptic and circuit mechanisms selling broadband transmission of olfactory stimulus dynamics. Nat. Neurosci. 18, 56–65 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Tao, L., Ozarkar, S. & Bhandawat, V. Mechanisms underlying attraction to odors in strolling Drosophila. PLoS Comput. Biol. 16, e1007718 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Bruyne, M., Foster, Ok. & Carlson, J. R. Odor coding within the Drosophila antenna. Neuron 30, 537–552 (2001).

    PubMed 

    Google Scholar
     

  • Gorur-Shandilya, S., Martelli, C., Demir, M. & Emonet, T. Controlling and measuring dynamic odorant stimuli within the laboratory. J. Exp. Biol. 222, jeb207787 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pope, S. B. Easy fashions of turbulent flows. Phys. Fluids 23, 011301 (2011).

    ADS 
    MATH 

    Google Scholar
     

  • Badwan, B. A., Creamer, M. S., Zavatone-Veth, J. A. & Clark, D. A. Dynamic nonlinearities allow path opponency in Drosophila elementary movement detectors. Nat. Neurosci. 22, 1318–1326 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein, S. On diffusion by discontinuous actions, and on the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Balkovsky, E. & Shraiman, B. I. Olfactory search at excessive Reynolds quantity. Proc. Natl Acad. Sci. USA 99, 12589–12593 (2002).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Miller, C. J. & Carlson, J. R. Regulation of odor receptor genes in trichoid sensilla of the Drosophila antenna. Genetics 186, 79–95 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Verified by MonsterInsights