[ad_1]
Murlis, J., Willis, M. A. & Cardé, R. T. Spatial and temporal constructions of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211–222 (2000).
Riffell, J. A., Abrell, L. & Hildebrand, J. G. Bodily processes and real-time chemical measurement of the insect olfactory surroundings. J. Chem. Ecol. 34, 837–853 (2008).
Celani, A., Villermaux, E. & Vergassola, M. Odor landscapes in turbulent environments. Phys. Rev. X 4, 041015 (2014).
Connor, E. G., McHugh, M. Ok. & Crimaldi, J. P. Quantification of airborne odor plumes utilizing planar laser-induced fluorescence. Exp. Fluids 59, 137 (2018).
Jung, S. H., Hueston, C. & Bhandawat, V. Odor-identity dependent motor packages underlie behavioral responses to odors. eLife 4, e11092 (2015).
Alvarez-Salvado, E. et al. Elementary sensory-motor transformations underlying olfactory navigation in strolling fruit-flies. eLife 7, e37815 (2018).
Kanzaki, R., Sugi, N. & Shibuya, T. Self-generated zigzag turning of Bombyx mori males throughout pheromone-mediated upwind strolling. Zool. Sci. 9, 515–527 (1992).
Mafra-Neto, A. & Cardé, R. T. Tremendous-scale construction of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144 (1994).
van Breugel, F. & Dickinson, M. H. Plume-tracking conduct of flying Drosophila emerges from a set of distinct sensory-motor reflexes. Curr. Biol. 24, 274–286 (2014).
Demir, M., Kadakia, N., Anderson, H. D., Clark, D. A. & Emonet, T. Strolling Drosophila navigate complicated plumes utilizing stochastic selections biased by the timing of odor encounters. eLife 9, e57524 (2020).
Vickers, N. J. & Baker, T. C. Reiterative responses to single strands of odor promote sustained upwind flight and odor supply location by moths. Proc. Natl Acad. Sci. USA 91, 5756–5760 (1994).
Budick, S. A. & Dickinson, M. H. Free-flight responses of Drosophila melanogaster to enticing odors. J. Exp. Biol. 209, 3001–3017 (2006).
Suver, M. P. et al. Encoding of wind path by central neurons in Drosophila. Neuron 102, 828–842 (2019).
Flügge, C. Geruchliche raumorientierung von Drosophila melanogaster. J. Comp. Physiol. A 20, 463–500 (1934).
Kennedy, J. S. & Marsh, D. Pheromone-regulated anemotaxis in flying moths. Science 184, 999–1001 (1974).
Hassenstein, B. & Reichardt, W. Z. Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Z. Naturforsch. 11, 513–524 (1956).
Gaudry, Q., Hong, E. J., Kain, J., de Bivort, B. L. & Wilson, R. I. Uneven neurotransmitter launch permits fast odour lateralization in Drosophila. Nature 493, 424–428 (2013).
Duistermars, B. J., Chow, D. M. & Frye, M. A. Flies require bilateral sensory enter to trace odor gradients in flight. Curr. Biol. 19, 1301–1307 (2009).
Taylor, G. I. Diffusion by steady actions. Proc. Lond. Math. Soc. 20, 196–212 (1922).
Klapoetke, N. C. et al. Unbiased optical excitation of distinct neural populations. Nat. Strategies 11, 338–346 (2014).
Bell, J. S. & Wilson, R. I. Habits reveals selective summation and max pooling amongst olfactory processing channels. Neuron 91, 425–438 (2016).
DeAngelis, B. D., Zavatone-Veth, J. A., Gonzalez-Suarez, A. D. & Clark, D. A. Spatiotemporally exact optogenetic activation of sensory neurons in freely strolling Drosophila. eLife 9, e54183 (2020).
Semmelhack, J. L. & Wang, J. W. Choose Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459, 218–223 (2009).
Wu, Y., Chen, Ok., Ye, Y., Zhang, T. & Zhou, W. People navigate with stereo olfaction. Proc. Natl Acad. Sci. USA 117, 16065–16071 (2020).
Bhandawat, V., Maimon, G., Dickinson, M. H. & Wilson, R. I. Olfactory modulation of flight in Drosophila is delicate, selective and fast. J. Exp. Biol. 213, 3625–3635 (2010).
Salazar-Gatzimas, E. et al. Direct measurement of correlation responses in Drosophila elementary movement detectors reveals quick timescale tuning. Neuron 92, 227–239 (2016).
Bours, R. J., Kroes, M. C. & Lankheet, M. J. Sensitivity for reverse-phi movement. Imaginative and prescient Res. 49, 1–9 (2009).
Tuthill, J. C., Chiappe, M. E. & Reiser, M. B. Neural correlates of illusory movement notion in Drosophila. Proc. Natl Acad. Sci. USA 108, 9685–9690 (2011).
Orger, M. B., Smear, M. C., Anstis, S. M. & Baier, H. Notion of Fourier and non-Fourier movement by larval zebrafish. Nat. Neurosci. 3, 1128–1133 (2000).
Livingstone, M. S., Pack, C. C. & Born, R. T. Two-dimensional substructure of MT receptive fields. Neuron 30, 781–793 (2001).
Anstis, S. M. & Rogers, B. J. Illusory reversal of visible depth and motion throughout adjustments of distinction. Imaginative and prescient Res. 15, 957–961 (1975).
Hu, Q. & Victor, J. D. A set of high-order spatiotemporal stimuli that elicit movement and reverse-phi percepts. J. Vis. 10, 9 (2010).
Clark, D. A. et al. Flies and people share a movement estimation technique that exploits pure scene statistics. Nat. Neurosci. 17, 296–303 (2014).
Jeanne, J. M. & Wilson, R. I. Convergence, divergence, and reconvergence in a feedforward community improves neural velocity and accuracy. Neuron 88, 1014–1026 (2015).
Gorur-Shandilya, S., Demir, M., Lengthy, J., Clark, D. A. & Emonet, T. Olfactory receptor neurons use acquire management and complementary kinetics to encode intermittent odorant stimuli. eLife 6, e27670 (2017).
Bhandawat, V., Olsen, S. R., Gouwens, N. W., Schlief, M. L. & Wilson, R. I. Sensory processing within the Drosophila antennal lobe will increase reliability and separability of ensemble odor representations. Nat. Neurosci. 10, 1474–1482 (2007).
Drix, D. & Schmuker, M. Resolving quick fuel transients with metallic oxide sensors. ACS Sensors 6, 688–692 (2021).
Martinez, D., Burgues, J. & Marco, S. Quick Measurements with MOX Sensors: a least-squares strategy to blind deconvolution. Sensors 19, 4029 (2019).
Kowadlo, G. & Russell, R. A. Robotic odor localization: a taxonomy and survey. Int. J. Robotic. Res. 27, 869–894 (2008).
Burgues, J., Hernandez, V., Lilienthal, A. J. & Marco, S. Smelling nano aerial car for fuel supply localization and mapping. Sensors 19, 478 (2019).
Boie, S. D. et al. Info-theoretic evaluation of lifelike odor plumes: What cues are helpful for figuring out location? PLoS Comput. Biol. 14, e1006275 (2018).
Jayaram, V., Kadakia, N. & Emonet, T. Sensing complementary temporal options of odor indicators enhances navigation of various turbulent plumes. eLife 11, e72415 (2022).
Reddy, G., Murthy, V. N. & Vergassola, M. Olfactory sensing and navigation in turbulent environments. Annu. Rev. Conden. Matter Phys. 13, 191–213 (2022).
Sreenivasan, Ok. R. Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116, 18175–18183 (2019).
Jefferis, G. S. et al. Complete maps of Drosophila greater olfactory facilities: spatially segregated fruit and pheromone illustration. Cell 128, 1187–1203 (2007).
Ackels, T. et al. Quick odour dynamics are encoded within the olfactory system and information behaviour. Nature 593, 558–563 (2021).
Martelli, C., Carlson, J. R. & Emonet, T. Depth invariant dynamics and odor-specific latencies in olfactory receptor neuron response. J. Neurosci. 33, 6285–6297 (2013).
Shusterman, R., Smear, M. C., Koulakov, A. A. & Rinberg, D. Exact olfactory responses tile the sniff cycle. Nat. Neurosci. 14, 1039–1044 (2011).
Park, I. J. et al. Neurally encoding time for olfactory navigation. PLoS Comput. Biol. 12, e1004682 (2016).
Nagel, Ok. I., Hong, E. J. & Wilson, R. I. Synaptic and circuit mechanisms selling broadband transmission of olfactory stimulus dynamics. Nat. Neurosci. 18, 56–65 (2015).
Tao, L., Ozarkar, S. & Bhandawat, V. Mechanisms underlying attraction to odors in strolling Drosophila. PLoS Comput. Biol. 16, e1007718 (2020).
de Bruyne, M., Foster, Ok. & Carlson, J. R. Odor coding within the Drosophila antenna. Neuron 30, 537–552 (2001).
Gorur-Shandilya, S., Martelli, C., Demir, M. & Emonet, T. Controlling and measuring dynamic odorant stimuli within the laboratory. J. Exp. Biol. 222, jeb207787 (2019).
Pope, S. B. Easy fashions of turbulent flows. Phys. Fluids 23, 011301 (2011).
Badwan, B. A., Creamer, M. S., Zavatone-Veth, J. A. & Clark, D. A. Dynamic nonlinearities allow path opponency in Drosophila elementary movement detectors. Nat. Neurosci. 22, 1318–1326 (2019).
Goldstein, S. On diffusion by discontinuous actions, and on the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951).
Balkovsky, E. & Shraiman, B. I. Olfactory search at excessive Reynolds quantity. Proc. Natl Acad. Sci. USA 99, 12589–12593 (2002).
Miller, C. J. & Carlson, J. R. Regulation of odor receptor genes in trichoid sensilla of the Drosophila antenna. Genetics 186, 79–95 (2010).
[ad_2]