HomeNatureParenchymal border macrophages regulate the stream dynamics of the cerebrospinal fluid

Parenchymal border macrophages regulate the stream dynamics of the cerebrospinal fluid

[ad_1]

  • Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Masuda, T. et al. Specification of CNS macrophage subsets happens postnatally in outlined niches. Nature 604, 740–748 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alves de Lima, Okay. et al. Meningeal γδ T cells regulate anxiety-like conduct by way of IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Filiano, A. J. et al. Sudden position of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konsman, J. P., Parnet, P. & Dantzer, R. Cytokine-induced illness behaviour: mechanisms and implications. Tendencies Neurosci. 25, 154–159 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Mestre, H. et al. Circulate of cerebrospinal fluid is pushed by arterial pulsations and is decreased in hypertension. Nat. Commun. 9, 4878 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iliff, J. J. et al. Cerebral arterial pulsation drives paravascular CSF–interstitial fluid alternate within the murine mind. J. Neurosci. 33, 18190–18199 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Veluw, S. J. et al. Vasomotion as a driving pressure for paravascular clearance within the awake mouse mind. Neuron 105, 549–561.e5 (2020).

    PubMed 

    Google Scholar
     

  • Iliff, J. J. et al. A paravascular pathway facilitates CSF stream via the mind parenchyma and the clearance of interstitial solutes, together with amyloid β. Sci. Transl Med. 4, 147ra111 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louveau, A. et al. Structural and practical options of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat. Neurosci. 25, 577–587 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Rustenhoven, J. et al. Purposeful characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e27 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kierdorf, Okay., Masuda, T., Jordão, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and performance in well being and illness. Nat. Rev. Neurosci. 20, 547–562 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Faraco, G., Park, L., Anrather, J. & Iadecola, C. Mind perivascular macrophages: characterization and practical roles in well being and illness. J. Mol. Med. 95, 1143–1152 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Van Hove, H. et al. A single-cell atlas of mouse mind macrophages reveals distinctive transcriptional identities formed by ontogeny and tissue surroundings. Nat. Neurosci. 22, 1021–1035 (2019).

    PubMed 

    Google Scholar
     

  • Goldmann, T. et al. Origin, destiny and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction related to hypertension. J. Clin. Make investments. 126, 4674–4689 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thanopoulou, Okay., Fragkouli, A., Stylianopoulou, F. & Georgopoulos, S. Scavenger receptor class B sort I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse mannequin. Proc. Natl Acad. Sci. USA 107, 20816–20821 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, L. et al. Mind perivascular macrophages provoke the neurovascular dysfunction of Alzheimer Aβ peptides. Circ. Res. 121, 258–269 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates throughout neuroinflammation. Science 363, eaat7554 (2019).

    PubMed 

    Google Scholar
     

  • Mrdjen, D. et al. Excessive-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in well being, getting old, and illness. Immunity 48, 380–395.e6 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Wardlaw, J. M. et al. Perivascular areas within the mind: anatomy, physiology and pathology. Nat. Rev. Neurol. 16, 137–153 (2020).

    PubMed 

    Google Scholar
     

  • Mestre, H. et al. Aquaporin-4-dependent glymphatic solute transport within the rodent mind. eLife 7, e40070 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. Evaluating glymphatic pathway operate using clinically related intrathecal infusion of CSF tracer. J. Transl Med. 11, 107 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Da Mesquita, S. et al. Purposeful features of meningeal lymphatics in ageing and Alzheimer’s illness. Nature 560, 185–191 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, J. H. et al. Meningeal lymphatic vessels on the cranium base drain cerebrospinal fluid. Nature 572, 62–66 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mestre, H. et al. Cerebrospinal fluid inflow drives acute ischemic tissue swelling. Science 367, eaax7171 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polfliet, M. M. et al. A technique for the selective depletion of perivascular and meningeal macrophages within the central nervous system. J. Neuroimmunol. 116, 188–195 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Hablitz, L. M. et al. Elevated glymphatic inflow is correlated with excessive EEG delta energy and low coronary heart price in mice below anesthesia. Sci. Adv. 5, eaav5447 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gakuba, C. et al. Basic anesthesia inhibits the exercise of the ‘glymphatic system’. Theranostics 8, 710–722 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, H. Y. et al. Hyaluronan receptor LYVE-1-expressing macrophages keep arterial tone via hyaluronan-mediated regulation of clean muscle cell collagen. Immunity 49, 326–341.e7 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Chow, B. W. et al. Caveolae in CNS arterioles mediate neurovascular coupling. Nature 579, 106–110 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baccin, C. et al. Mixed single-cell and spatial transcriptomics reveal the molecular, mobile and spatial bone marrow area of interest group. Nat. Cell Biol. 22, 38–48 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, N. et al. LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor development. J. Exp. Med. 218, e20210924 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boissonneault, V. et al. Highly effective useful results of macrophage colony-stimulating issue on β-amyloid deposition and cognitive impairment in Alzheimer’s illness. Mind 132, 1078–1092 (2009).

    PubMed 

    Google Scholar
     

  • Hawkes, C. A. & McLaurin, J. Selective focusing on of perivascular macrophages for clearance of β-amyloid in cerebral amyloid angiopathy. Proc. Natl Acad. Sci. USA 106, 1261–1266 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keren-Shaul, H. et al. A novel microglia sort related to proscribing improvement of Alzheimer’s illness. Cell 169, 1276–1290.e17 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Da Mesquita, S. et al. Meningeal lymphatics have an effect on microglia responses and anti-Aβ immunotherapy. Nature 593, 255–260 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Utz, S. G. et al. Early destiny defines microglia and non-parenchymal mind macrophage improvement. Cell 181, 557–573.e18 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Pires, P. W. et al. Enchancment in center cerebral artery construction and endothelial operate in stroke-prone spontaneously hypertensive rats after macrophage depletion. Microcirculation 20, 650–661 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Császár, E. et al. Microglia modulate blood stream, neurovascular coupling, and hypoperfusion by way of purinergic actions. J. Exp. Med. 219, e20211071 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erde, J., Lavatory, R. R. O. & Lavatory, J. A. Bettering proteome protection and pattern restoration with enhanced FASP (eFASP) for quantitative proteomic experiments. Strategies Mol. Biol. 1550, 11–18 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics utilizing StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Cai, R. et al. Panoptic imaging of clear mice reveals whole-body neuronal projections and cranium–meninges connections. Nat. Neurosci. 22, 317–327 (2019).

  • Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level evaluation of single-cell RNA-seq information with Bioconductor. F1000Research 5, 2122 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarthy, D. J., Campbell, Okay. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, high quality management, normalization and visualization of single-cell RNA-seq information in R. Bioinformatics 33, 1179–1186 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic information throughout totally different circumstances, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van den Berge, Okay. et al. Remark weights unlock bulk RNA-seq instruments for zero inflation and single-cell purposes. Genome Biol. 19, 24 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. Okay. edgeR: a Bioconductor package deal for differential expression evaluation of digital gene expression information. Bioinformatics 26, 139–140 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Hong, G., Zhang, W., Li, H., Shen, X. & Guo, Z. Separate enrichment evaluation of pathways for up- and downregulated genes. J. R. Soc. Interface 11, 20130950 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Exit mobile version