
[ad_1]
West, E. E. et al. PD-L1 blockade synergizes with IL-2 remedy in reinvigorating exhausted T cells. J. Clin. Make investments. 123, 2604–2615 (2013).
Pol, J. G., Caudana, P., Paillet, J., Piaggio, E. & Kroemer, G. Results of interleukin-2 in immunostimulation and immunosuppression. J. Exp. Med. 217, e20191247 (2019).
Overwijk, W. W., Tagliaferri, M. A. & Zalevsky, J. Engineering IL-2 to present new life to T cell immunotherapy. Annu. Rev. Med. 72, 281–311 (2021).
Hashimoto, M. et al. CD8 T cell exhaustion in continual an infection and most cancers: alternatives for interventions. Annu. Rev. Med. 69, 301–318 (2018).
McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion throughout continual viral an infection and most cancers. Annu. Rev. Immunol. 37, 457–495 (2019).
Leonard, W. J., Lin, J. X. & O’Shea, J. J. The γc household of cytokines: fundamental biology to therapeutic ramifications. Immunity 50, 832–850 (2019).
Gillis, S., Ferm, M. M., Ou, W. & Smith, Okay. A. T cell development issue: parameters of manufacturing and a quantitative microassay for exercise. J. Immunol. 120, 2027–2032 (1978).
He, R. et al. Follicular CXCR5-expressing CD8+ T cells curtail continual viral an infection. Nature 537, 412–428 (2016).
Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells throughout continual an infection. Immunity 51, 1043–1058 (2019).
Im, S. J. et al. Defining CD8+ T cells that present the proliferative burst after PD-1 remedy. Nature 537, 417–421 (2016).
Im, S. J., Konieczny, B. T., Hudson, W. H., Masopust, D. & Ahmed, R. PD-1+ stemlike CD8 T cells are resident in lymphoid tissues throughout persistent LCMV an infection. Proc. Natl Acad. Sci. USA 117, 4292–4299 (2020).
Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells management viral an infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016).
Utzschneider, D. T. et al. T cell issue 1-expressing memory-like CD8+ T cells maintain the immune response to continual viral infections. Immunity 45, 415–427 (2016).
Zander, R. et al. CD4+ T cell assistance is required for the formation of a cytolytic CD8+ T cell subset that protects in opposition to continual an infection and most cancers. Immunity 51, 1028–1042 (2019).
Web optimization, H. et al. TOX and TOX2 transcription elements cooperate with NR4A transcription elements to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).
Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion throughout continual viral an infection. Immunity 27, 670–684 (2007).
Hudson, W. H. et al. Expression of novel lengthy noncoding RNAs defines virus-specific effector and reminiscence CD8+ T cells. Nat. Commun. 10, 196 (2019).
Joshi, N. S. et al. Irritation directs reminiscence precursor and short-lived effector CD8+ T cell fates by way of the graded expression of T-bet transcription issue. Immunity 27, 281–295 (2007).
Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived reminiscence cells. Nat. Immunol. 4, 1191–1198 (2003).
Sarkar, S. et al. Purposeful and genomic profiling of effector CD8 T cell subsets with distinct reminiscence fates. J. Exp. Med. 205, 625–640 (2008).
Chow, M. T. et al. Intratumoral exercise of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 remedy. Immunity 50, 1498–1512 (2019).
Hickman, H. D. et al. CXCR3 chemokine receptor allows native CD8+ T cell migration for the destruction of virus-infected cells. Immunity 42, 524–537 (2015).
Pauken, Okay. E. et al. Epigenetic stability of exhausted T cells limits sturdiness of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).
Sen, D. R. et al. The epigenetic panorama of T cell exhaustion. Science 354, 1165–1169 (2016).
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for quick and delicate epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome place. Nat. Strategies 10, 1213–1218 (2013).
McLean, C. Y. et al. GREAT improves practical interpretation of cis-regulatory areas. Nat. Biotechnol. 28, 495–501 (2010).
Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in continual viral an infection. Nature 571, 265–269 (2019).
Khan, O. et al. TOX transcriptionally and epigenetically applications CD8+ T cell exhaustion. Nature 571, 211–218 (2019).
Scott, A. C. et al. TOX is a vital regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).
Jadhav, R. R. et al. Epigenetic signature of PD-1+ TCF1+ CD8 T cells that act as useful resource cells throughout continual viral an infection and reply to PD-1 blockade. Proc. Natl Acad. Sci. USA 116, 14113–14118 (2019).
Mueller, S. N. et al. PD-L1 has distinct capabilities in hematopoietic and nonhematopoietic cells in regulating T cell responses throughout continual an infection in mice. J. Clin. Make investments. 120, 2508–2515 (2010).
Juneja, V. R. et al. PD-L1 on tumor cells is adequate for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214, 895–904 (2017).
Lau, J. et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat. Commun. 8, 14572 (2017).
Plitas, G. & Rudensky, A. Y. Regulatory T cells in most cancers. Annu. Rev. Most cancers Biol. 4, 459–477 (2020).
Malek, T. R. & Castro, I. Interleukin-2 receptor signaling: on the interface between tolerance and immunity. Immunity 33, 153–165 (2010).
Huss, D. J. et al. Anti-CD25 monoclonal antibody Fc variants differentially affect regulatory T cells and immune homeostasis. Immunology 148, 276–286 (2016).
Klein, C. et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for mixture most cancers immunotherapy: overcoming limitations of aldesleukin and standard IL-2-based immunocytokines. Oncoimmunology 6, e1277306 (2017).
Su, E. W. et al. IL-2Rα mediates temporal regulation of IL-2 signaling and enhances immunotherapy. Sci. Transl. Med. 7, 311ra170 (2015).
Codarri Deak, L. et al. PD-1-cis-IL-2R agonism yields higher effectors from stem-like CD8 T cells. Nature https://doi.org/10.1038/s41586-022-05192-0 (2022).
Bristol Myers Squibb and Nektar announce replace on section 3 PIVOT IO-001 trial evaluating bempegaldesleukin (BEMPEG) together with Opdivo (nivolumab) in beforehand untreated unresectable or metastatic melanoma (Businesswire, 2022); https://www.businesswire.com/information/residence/20220313005021/en/Bristol-Myers-Squibb-and-Nektar-Announce-Replace-on-Part-3-PIVOT-IO-001-Trial-Evaluating-Bempegaldesleukin-BEMPEG-in-Mixture-with-Opdivo-nivolumab-in-Beforehand-Untreated-Unresectable-or-Metastatic-Melanoma
Wherry, E. J., Blattman, J. N., Murali-Krishna, Okay., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and leads to distinct levels of practical impairment. J. Virol. 77, 4911–4927 (2003).
Bankhead, P. et al. QuPath: open supply software program for digital pathology picture evaluation. Sci. Rep. 7, 16878 (2017).
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).
Liao, Y., Smyth, G. Okay. & Shi, W. featureCounts: an environment friendly basic objective program for assigning sequence reads to genomic options. Bioinformatics 30, 923–930 (2014).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 15, 550 (2014).
Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Hadley, W. ggplot2: Elegant Graphics for Information Evaluation (Springer, 2016).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression information. Nat. Biotechnol. 33, 495–502 (2015).
DeTomaso, D. & Yosef, N. FastProject: a software for low-dimensional evaluation of single-cell RNA-Seq information. BMC Bioinform. 17, 315 (2016).
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Supply Softw. 3, 861 (2018).
Van Gassen, S. et al. FlowSOM: utilizing self-organizing maps for visualization and interpretation of cytometry information. Cytometry A 87, 636–645 (2015).
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a technique for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: identification of problematic areas of the genome. Sci. Rep. 9, 9354 (2019).
Hansen, Okay. D., Irizarry, R. A. & Wu, Z. Eradicating technical variability in RNA-seq information utilizing conditional quantile normalization. Biostatistics 13, 204–216 (2012).
Liu, R. et al. Why weight? Modelling pattern and observational degree variability improves energy in RNA-seq analyses. Nucleic Acids Res. 43, e97 (2015).
Heinz, S. et al. Easy mixtures of lineage-determining transcription elements prime cis-regulatory components required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
[ad_2]