Saturday, February 4, 2023
HomeNatureQuantum subject simulator for dynamics in curved spacetime

Quantum subject simulator for dynamics in curved spacetime

[ad_1]

  • Weinberg, S. Cosmology (Oxford Univ. Press, 2008).

  • Schrödinger, E. The right vibrations of the increasing universe. Physica 6, 899–912 (1939).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Parker, L. Quantized fields and particle creation in increasing universes. I. Phys. Rev. 183, 1057–1068 (1969).

    ADS 
    MATH 

    Google Scholar
     

  • Birrell, N. D. & Davies, P. C. W. Quantum Fields in Curved House (Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, 1982).

  • Mukhanov, V. & Winitzki, S. Introduction to Quantum Results in Gravity (Cambridge Univ. Press, Cambridge, 2007).

  • Saint-Jalm, R. et al. Dynamical symmetry and breathers in a two-dimensional Bose gasoline. Phys. Rev. X 9, 021035 (2019).

    CAS 

    Google Scholar
     

  • Gauthier, G. et al. in Advances in Atomic, Molecular, and Optical Physics Vol. 70 (eds Dimauro, L. F. et al.) Ch. 1, 1–101 (Educational Press, 2021).

  • Unruh, W. G. Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351–1353 (1981).

    ADS 

    Google Scholar
     

  • Unruh, W. G. Sonic analogue of black holes and the consequences of excessive frequencies on black gap evaporation. Phys. Rev. D 51, 2827–2838 (1995).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Sonic analog of gravitational black holes in Bose–Einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Visser, M., Barceló, C. & Liberati, S. Analogue fashions of and for gravity. Gen. Relativ. Gravit. 34, 1719–1734 (2002).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Novello, M., Visser, M. & Volovik, G. E. (eds) Synthetic Black Holes (World Scientific Publishing, 2002).

  • Barceló, C., Liberati, S. & Visser, M. Probing semiclassical analog gravity in Bose–Einstein condensates with extensively tunable interactions. Phys. Rev. A 68, 053613 (2003).

    ADS 

    Google Scholar
     

  • Fedichev, P. O. & Fischer, U. R. “Cosmological” quasiparticle manufacturing in harmonically trapped superfluid gases. Phys. Rev. A 69, 033602 (2004).

    ADS 

    Google Scholar
     

  • Jain, P., Weinfurtner, S., Visser, M. & Gardiner, C. W. Analog mannequin of a Friedmann–Robertson–Walker universe in Bose–Einstein condensates: utility of the classical subject technique. Phys. Rev. A 76, 033616 (2007).

    ADS 

    Google Scholar
     

  • Schützhold, R. Recreating basic results within the laboratory?. Adv. Sci. Lett. 2, 121–132 (2009).


    Google Scholar
     

  • Prain, A., Fagnocchi, S. & Liberati, S. Analogue cosmological particle creation: quantum correlations in increasing Bose–Einstein condensates. Phys. Rev. D 82, 105018 (2010).

    ADS 

    Google Scholar
     

  • Barceló, C., Liberati, S. & Visser, M. Analogue gravity. Residing Rev. Relativ. 14, 3 (2011).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jacquet, M. J., Weinfurtner, S. & König, F. The following technology of analogue gravity experiments. Phil. Trans. R Soc. A 378, 20190239 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philbin, T. G. et al. Fiber-optical analog of the occasion horizon. Science 319, 1367–1370 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R. & Fabbri, A. Numerical statement of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates. New J. Phys. 10, 103001 (2008).

    ADS 

    Google Scholar
     

  • Lahav, O. et al. Realization of a sonic black gap analog in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • Steinhauer, J. Statement of self-amplifying Hawking radiation in an analogue black-hole laser. Nat. Phys. 10, 864–869 (2014).

    CAS 

    Google Scholar
     

  • Eckel, S., Kumar, A., Jacobson, T., Spielman, I. B. & Campbell, G. Ok. A quickly increasing Bose–Einstein condensate: an increasing universe within the lab. Phys. Rev. X 8, 021021 (2018).

    CAS 

    Google Scholar
     

  • Muñoz de Nova, J. R., Golubkov, Ok., Kolobov, V. I. & Steinhauer, J. Statement of thermal Hawking radiation and its temperature in an analogue black gap. Nature 569, 688–691 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Wittemer, M. et al. Phonon pair creation by inflating quantum fluctuations in an ion lure. Phys. Rev. Lett. 123, 180502 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Banik, S. et al. Correct dedication of Hubble attenuation and amplification in increasing and contracting cold-atom universes. Phys. Rev. Lett. 128, 090401 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Errico, C. et al. Feshbach resonances in ultracold 39Ok. New J. Phys. 9, 223 (2007).

    ADS 

    Google Scholar
     

  • Jaskula, J.-C. et al. Acoustic analog to the dynamical Casimir impact in a Bose–Einstein condensate. Phys. Rev. Lett. 109, 220401 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • Hung, C.-L., Gurarie, V. & Chin, C. From cosmology to chilly atoms: statement of Sakharov oscillations in a quenched atomic superfluid. Science 341, 1213–1215 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C.-A., Khlebnikov, S. & Hung, C.-L. Statement of quasiparticle pair manufacturing and quantum entanglement in atomic quantum gases quenched to a gorgeous interplay. Phys. Rev. Lett. 127, 060404 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinhauer, J. et al. Analogue cosmological particle creation in an ultracold quantum fluid of sunshine. Nat. Commun. 13, 2890 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tolosa-Simeón, M. et al. Curved and increasing spacetime geometries in Bose–Einstein condensates. Phys. Rev. A 106, 033313 (2022).

  • Gross, C. et al. Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature 480, 219–223 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakharov, A. D. The preliminary stage of an increasing Universe and the looks of a nonuniform distribution of matter. Sov. Phys. JETP 22, 241–249 (1966).

    ADS 

    Google Scholar
     

  • Grishchuk, L. P. Cosmological Sakharov oscillations and quantum mechanics of the early Universe. Phys. Uspekhi 55, 210 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Giorgini, S., Pitaevskii, L. P. & Stringari, S. Condensate fraction and significant temperature of a trapped interacting Bose gasoline. Phys. Rev. A 54, R4633 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berges, J., Floerchinger, S. & Venugopalan, R. Dynamics of entanglement in increasing quantum fields. J. Excessive Power Phys. 2018, 145 (2018).

  • Robertson, S., Michel, F. & Parentani, R. Controlling and observing nonseparability of phonons created in time-dependent 1D atomic Bose condensates. Phys. Rev. D 95, 065020 (2017).

    ADS 

    Google Scholar
     

  • Kunkel, P. et al. Detecting entanglement construction in steady many-body quantum programs. Phys. Rev. Lett. 128, 020402 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibbons, G. W. & Hawking, S. W. Cosmological occasion horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Jacobson, T. Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jacobson, T. Entanglement equilibrium and the Einstein equation. Phys. Rev. Lett. 116, 201101 (2016).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Fischer, U. R. & Schützhold, R. Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates. Phys. Rev. A 70, 063615 (2004).

    ADS 

    Google Scholar
     

  • Schmidt-Might, A. & von Strauss, M. Latest developments in bimetric principle. J. Phys. A 49, 183001 (2016).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Hans, M. et al. Excessive sign to noise absorption imaging of alkali atoms at average magnetic fields. Rev. Sci. Instrum. 92, 023203 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Volovik, G. E. The Universe in a Helium Droplet (Oxford Univ. Press, 2009).

  • Bilić, N. & Tolić, D. FRW universe within the laboratory. Phys. Rev. D 88, 105002 (2013).

    ADS 

    Google Scholar
     

  • Sánchez-Kuntz, N., Parra-López, Á., Tolosa-Simeón, M., Haas, T. & Floerchinger, S. Scalar quantum fields in cosmologies with 2 + 1 spacetime dimensions. Phys. Rev. D 105, 105020 (2022).

    ADS 
    MathSciNet 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Verified by MonsterInsights