[ad_1]
Weinberg, S. Cosmology (Oxford Univ. Press, 2008).
Schrödinger, E. The right vibrations of the increasing universe. Physica 6, 899–912 (1939).
Parker, L. Quantized fields and particle creation in increasing universes. I. Phys. Rev. 183, 1057–1068 (1969).
Birrell, N. D. & Davies, P. C. W. Quantum Fields in Curved House (Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, 1982).
Mukhanov, V. & Winitzki, S. Introduction to Quantum Results in Gravity (Cambridge Univ. Press, Cambridge, 2007).
Saint-Jalm, R. et al. Dynamical symmetry and breathers in a two-dimensional Bose gasoline. Phys. Rev. X 9, 021035 (2019).
Gauthier, G. et al. in Advances in Atomic, Molecular, and Optical Physics Vol. 70 (eds Dimauro, L. F. et al.) Ch. 1, 1–101 (Educational Press, 2021).
Unruh, W. G. Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351–1353 (1981).
Unruh, W. G. Sonic analogue of black holes and the consequences of excessive frequencies on black gap evaporation. Phys. Rev. D 51, 2827–2838 (1995).
Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Sonic analog of gravitational black holes in Bose–Einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000).
Visser, M., Barceló, C. & Liberati, S. Analogue fashions of and for gravity. Gen. Relativ. Gravit. 34, 1719–1734 (2002).
Novello, M., Visser, M. & Volovik, G. E. (eds) Synthetic Black Holes (World Scientific Publishing, 2002).
Barceló, C., Liberati, S. & Visser, M. Probing semiclassical analog gravity in Bose–Einstein condensates with extensively tunable interactions. Phys. Rev. A 68, 053613 (2003).
Fedichev, P. O. & Fischer, U. R. “Cosmological” quasiparticle manufacturing in harmonically trapped superfluid gases. Phys. Rev. A 69, 033602 (2004).
Jain, P., Weinfurtner, S., Visser, M. & Gardiner, C. W. Analog mannequin of a Friedmann–Robertson–Walker universe in Bose–Einstein condensates: utility of the classical subject technique. Phys. Rev. A 76, 033616 (2007).
Schützhold, R. Recreating basic results within the laboratory?. Adv. Sci. Lett. 2, 121–132 (2009).
Prain, A., Fagnocchi, S. & Liberati, S. Analogue cosmological particle creation: quantum correlations in increasing Bose–Einstein condensates. Phys. Rev. D 82, 105018 (2010).
Barceló, C., Liberati, S. & Visser, M. Analogue gravity. Residing Rev. Relativ. 14, 3 (2011).
Jacquet, M. J., Weinfurtner, S. & König, F. The following technology of analogue gravity experiments. Phil. Trans. R Soc. A 378, 20190239 (2020).
Philbin, T. G. et al. Fiber-optical analog of the occasion horizon. Science 319, 1367–1370 (2008).
Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011).
Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R. & Fabbri, A. Numerical statement of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates. New J. Phys. 10, 103001 (2008).
Lahav, O. et al. Realization of a sonic black gap analog in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010).
Steinhauer, J. Statement of self-amplifying Hawking radiation in an analogue black-hole laser. Nat. Phys. 10, 864–869 (2014).
Eckel, S., Kumar, A., Jacobson, T., Spielman, I. B. & Campbell, G. Ok. A quickly increasing Bose–Einstein condensate: an increasing universe within the lab. Phys. Rev. X 8, 021021 (2018).
Muñoz de Nova, J. R., Golubkov, Ok., Kolobov, V. I. & Steinhauer, J. Statement of thermal Hawking radiation and its temperature in an analogue black gap. Nature 569, 688–691 (2019).
Wittemer, M. et al. Phonon pair creation by inflating quantum fluctuations in an ion lure. Phys. Rev. Lett. 123, 180502 (2019).
Banik, S. et al. Correct dedication of Hubble attenuation and amplification in increasing and contracting cold-atom universes. Phys. Rev. Lett. 128, 090401 (2022).
D’Errico, C. et al. Feshbach resonances in ultracold 39Ok. New J. Phys. 9, 223 (2007).
Jaskula, J.-C. et al. Acoustic analog to the dynamical Casimir impact in a Bose–Einstein condensate. Phys. Rev. Lett. 109, 220401 (2012).
Hung, C.-L., Gurarie, V. & Chin, C. From cosmology to chilly atoms: statement of Sakharov oscillations in a quenched atomic superfluid. Science 341, 1213–1215 (2013).
Chen, C.-A., Khlebnikov, S. & Hung, C.-L. Statement of quasiparticle pair manufacturing and quantum entanglement in atomic quantum gases quenched to a gorgeous interplay. Phys. Rev. Lett. 127, 060404 (2021).
Steinhauer, J. et al. Analogue cosmological particle creation in an ultracold quantum fluid of sunshine. Nat. Commun. 13, 2890 (2022).
Tolosa-Simeón, M. et al. Curved and increasing spacetime geometries in Bose–Einstein condensates. Phys. Rev. A 106, 033313 (2022).
Gross, C. et al. Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature 480, 219–223 (2011).
Sakharov, A. D. The preliminary stage of an increasing Universe and the looks of a nonuniform distribution of matter. Sov. Phys. JETP 22, 241–249 (1966).
Grishchuk, L. P. Cosmological Sakharov oscillations and quantum mechanics of the early Universe. Phys. Uspekhi 55, 210 (2012).
Giorgini, S., Pitaevskii, L. P. & Stringari, S. Condensate fraction and significant temperature of a trapped interacting Bose gasoline. Phys. Rev. A 54, R4633 (1996).
Berges, J., Floerchinger, S. & Venugopalan, R. Dynamics of entanglement in increasing quantum fields. J. Excessive Power Phys. 2018, 145 (2018).
Robertson, S., Michel, F. & Parentani, R. Controlling and observing nonseparability of phonons created in time-dependent 1D atomic Bose condensates. Phys. Rev. D 95, 065020 (2017).
Kunkel, P. et al. Detecting entanglement construction in steady many-body quantum programs. Phys. Rev. Lett. 128, 020402 (2022).
Gibbons, G. W. & Hawking, S. W. Cosmological occasion horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977).
Jacobson, T. Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995).
Jacobson, T. Entanglement equilibrium and the Einstein equation. Phys. Rev. Lett. 116, 201101 (2016).
Fischer, U. R. & Schützhold, R. Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates. Phys. Rev. A 70, 063615 (2004).
Schmidt-Might, A. & von Strauss, M. Latest developments in bimetric principle. J. Phys. A 49, 183001 (2016).
Hans, M. et al. Excessive sign to noise absorption imaging of alkali atoms at average magnetic fields. Rev. Sci. Instrum. 92, 023203 (2021).
Volovik, G. E. The Universe in a Helium Droplet (Oxford Univ. Press, 2009).
Bilić, N. & Tolić, D. FRW universe within the laboratory. Phys. Rev. D 88, 105002 (2013).
Sánchez-Kuntz, N., Parra-López, Á., Tolosa-Simeón, M., Haas, T. & Floerchinger, S. Scalar quantum fields in cosmologies with 2 + 1 spacetime dimensions. Phys. Rev. D 105, 105020 (2022).
[ad_2]