Spatial genomics maps the construction, nature and evolution of most cancers clones

12
69

[ad_1]

  • Gerstung, M. et al. The evolutionary historical past of two,658 cancers. Nature 578, 122–128 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andor, N. et al. Pan-cancer evaluation of the extent and penalties of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Yates, L. R. et al. Subclonal diversification of major breast most cancers revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greaves, M. & Maley, C. C. Clonal evolution in most cancers. Nature 481, 306–313 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: previous, current, and the longer term. Cell 168, 613–628 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity throughout 2,658 human most cancers genomes. Cell 184, 2239–2254.e39 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nik-Zainal, S. et al. The life historical past of 21 breast cancers. Cell 149, 994–1007 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaglia, G. et al. Temporal and spatial topography of cell proliferation in most cancers. Nat. Cell Biol. 24, 316–326 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Risom, T. et al. Transition to invasive breast most cancers is related to progressive adjustments within the construction and composition of tumor stroma. Cell 185, 299–310.e18 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Yates, L. R. et al. Genomic evolution of breast most cancers metastasis and relapse. Most cancers Cell 32, 169–184.e7 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maley, C. C. et al. Genetic clonal variety predicts development to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Jamal-Hanjani, M. et al. Monitoring the evolution of non–small-cell lung most cancers. N. Engl. J. Med. 376, 2109–2121 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Janiszewska, M. et al. Subclonal cooperation drives metastasis by modulating native and systemic immune microenvironments. Nat. Cell Biol. 21, 879–888 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juric, D. et al. Convergent lack of PTEN results in scientific resistance to a PI(3)Kα inhibitor. Nature 518, 240–244 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, S. et al. Comparative lesion sequencing offers insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide decision. Nature 461, 809–813 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Casasent, A. Okay. et al. Multiclonal invasion in breast tumors recognized by topographic single cell sequencing. Cell 172, 205–217.e12 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarabichi, M. et al. A sensible information to most cancers subclonal reconstruction from DNA sequencing. Nat. Strategies 18, 144–155 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, C. Y. et al. Genome-wide seek for lack of heterozygosity utilizing laser seize microdissected tissue of breast carcinoma: an implication for mutator phenotype and breast most cancers pathogenesis. Most cancers Res. 60, 3884–3892 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, T. et al. Spatial genomics allows multi-modal research of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Erickson, A. et al. Spatially resolved clonal copy quantity alterations in benign and malignant tissue. Nature 608, 360–367 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janiszewska, M. et al. In situ single-cell evaluation identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast most cancers. Nat. Genet. 47, 1212–1219 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsson, C., Grundberg, I., Söderberg, O. & Nilsson, M. In situ detection and genotyping of particular person mRNA molecules. Nat. Strategies 7, 395–397 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Grundberg, I. et al. In situ mutation detection and visualization of intratumor heterogeneity for most cancers analysis and diagnostics. Oncotarget 4, 2407–2418 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke, R. et al. In situ sequencing for RNA evaluation in preserved tissue and cells. Nat. Strategies 10, 857–860 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Baker, A.-M. et al. Strong RNA-based in situ mutation detection delineates colorectal most cancers subclonal evolution. Nat. Commun. 8, 1998 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cowell, C. F. et al. Development from ductal carcinoma in situ to invasive breast most cancers: revisited. Mol. Oncol. 7, 859–869 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svedlund, J. et al. Era of in situ sequencing primarily based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast most cancers. EBioMedicine 48, 212–223 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellis, P. et al. Dependable detection of somatic mutations in strong tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Gataric, M. et al. PoSTcode: probabilistic image-based spatial transcriptomics decoder. Preprint at https://doi.org/10.1101/2021.10.12.464086 (2021).

  • Nirmal, A. J. et al. The spatial panorama of development and immunoediting in major melanoma at single-cell decision. Most cancers Discov. 12, 1518–1541 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kole, A. J. et al. Total survival is improved when DCIS accompanies invasive breast most cancers. Sci. Rep. 9, 9934 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Going, J. J. & Moffat, D. F. Escaping from flatland: scientific and organic facets of human mammary duct anatomy in three dimensions. J. Pathol. 203, 538–544 (2004).

    PubMed 

    Google Scholar
     

  • Schnitt, S. J. & Collins, L. C. Biopsy Interpretation of the Breast (Lippincott Williams & Wilkins, 2009).

  • Pinder, S. E. Ductal carcinoma in situ (DCIS): pathological options, differential prognosis, prognostic elements and specimen analysis. Mod. Pathol. 23, S8–S13 (2010).

    PubMed 

    Google Scholar
     

  • Thomson, J. Z. et al. Progress sample of ductal carcinoma in situ (DCIS): a retrospective evaluation primarily based on mammographic findings. Br. J. Most cancers 85, 225–227 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solin, L. J. et al. A multigene expression assay to foretell native recurrence threat for ductal carcinoma in situ of the breast. J. Natl Most cancers Inst. 105, 701–710 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jatoi, I., Hilsenbeck, S. G., Clark, G. M. & Osborne, C. Okay. Significance of axillary lymph node metastasis in major breast most cancers. J. Clin. Oncol. 17, 2334–2340 (1999)

  • Sereesongsaeng, N., McDowell, S. H., Burrows, J. F., Scott, C. J. & Burden, R. E. Cathepsin V suppresses GATA3 protein expression in luminal A breast most cancers. Breast Most cancers Res. 22, 139 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, M. J. et al. CD24 overexpression is related to poor prognosis in luminal A and triple-negative breast most cancers. PLoS ONE 10, e0139112 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X.-P. et al. Co-expression of CXCL8 and HIF-1α is related to metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget 6, 22880–22889 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cairns, R. A. & Hill, R. P. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine mannequin of human cervical carcinoma. Most cancers Res. 64, 2054–2061 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Sottoriva, A. et al. A Large Bang mannequin of human colorectal tumor development. Nat. Genet. 47, 209–216 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vickovic, S. et al. Excessive-definition spatial transcriptomics for in situ tissue profiling. Nat. Strategies 16, 987–990 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gyllborg, D. et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse mind tissue. Nucleic Acids Res. 48, e112 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H., Marco Salas, S., Gyllborg, D. & Nilsson, M. Direct RNA focused in situ sequencing for transcriptomic profiling in tissue. Sci. Rep. 12, 7976 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobzhansky, T. Nothing in biology is sensible besides within the gentle of evolution. Am. Biol. Educate. 35, 125–129 (1973).


    Google Scholar
     

  • [ad_2]

    12 COMMENTS

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here