Tuesday, October 4, 2022
HomeNatureStructural foundation for directional chitin biosynthesis

Structural foundation for directional chitin biosynthesis


  • Moussian, B. Chitin: construction, chemistry and biology. Adv. Exp. Med. Biol. 1142, 5–18 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jaworski, E., Wang, L. & Marco, G. Synthesis of chitin in cell-free extracts of Prodenia eridania. Nature 198, 790 (1963).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhu, Okay. Y., Merzendorfer, H., Zhang, W., Zhang, J. & Muthukrishnan, S. Biosynthesis, turnover, and features of chitin in bugs. Annu. Rev. Entomol. 61, 177–196 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guerriero, G. et al. Chitin synthases from Saprolegnia are concerned in tip development and symbolize a possible goal for anti-oomycete medication. PLoS Pathog. 6, e1001070 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Merzendorfer, H. Chitin synthesis inhibitors: outdated molecules and new developments. Insect Sci. 20, 121–138 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cortes, J. C. G., Curto, M. A., Carvalho, V. S. D., Perez, P. & Ribas, J. C. The fungal cell wall as a goal for the event of recent antifungal therapies. Biotechnol. Adv. 37, 107352 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: constructions, features, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bi, Y., Hubbard, C., Purushotham, P. & Zimmer, J. Insights into the construction and performance of membrane-integrated processive glycosyltransferases. Curr. Opin. Struct. Biol. 34, 78–86 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dorfmueller, H. C., Ferenbach, A. T., Borodkin, V. S. & van Aalten, D. M. A structural and biochemical mannequin of processive chitin synthesis. J. Biol. Chem. 289, 23020–23028 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klinter, S., Bulone, V. & Arvestad, L. Range and evolution of chitin synthases in oomycetes (Straminipila: Oomycota). Mol. Phylogenet. Evol. 139, 106558 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, X., Yang, X., Zheng, X., Bai, M. & Hu, D. Overview on constructions of pesticide targets. Int. J. Mol. Sci. 21, 7144 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dahn, U. et al. Stoffwechselprodukte von mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer hemmstoff der chitinsynthese bei pilzen. Arch. Microbiol. 107, 143–160 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Larwood, D. J. Nikkomycin Z-ready to satisfy the promise? J. Fungi (Basel) 6, 261 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ma, Z. et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a bunch inhibitor. Science 355, 710–714 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, W. et al. A large NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat. Commun. 12, 6263 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng, W. et al. Chitin synthase is concerned in vegetative development, asexual replica and pathogenesis of Phytophthora capsici and Phytophthora sojae. Environ. Microbiol. 21, 4537–4547 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gyore, J. et al. 2-Acylamido analogues of N-acetylglucosamine prime formation of chitin oligosaccharides by yeast chitin synthase 2. J. Biol. Chem. 289, 12835–12841 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ogawa, Y., Kimura, S., Wada, M. & Kuga, S. Crystal evaluation and high-resolution imaging of microfibrillar α-chitin from Phaeocystis. J. Struct. Biol. 171, 111–116 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsurkan, M. V. et al. Progress in chitin analytics. Carbohydr. Polym. 252, 117204 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ogawa, Y., Kimura, S. & Wada, M. Electron diffraction and high-resolution imaging on highly-crystalline β-chitin microfibril. J. Struct. Biol. 176, 83–90 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Noishiki, Y. et al. Alkali-induced conversion of β-chitin to α-chitin. Biomacromolecules 4, 896–899 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goodrich, J. D. & Winter, W. T. α-Chitin nanocrystals ready from shrimp shells and their particular floor space measurement. Biomacromolecules 8, 252–257 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bulone, V., Chanzy, H., Homosexual, L., Girard, V. & Fevre, M. Characterization of chitin and chitin synthase from the cellulosic cell wall fungus Saprolegnia monoica. Exp. Mycol. 16, 8–21 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Gohlke, S., Muthukrishnan, S. & Merzendorfer, H. In vitro and in vivo research on the structural group of Chs3 from Saccharomyces cerevisiae. Int. J. Mol. Sci. 18, 702 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Scott, A. et al. Construction and ESCRT-III protein interactions of the MIT area of human VPS4A. Proc. Natl Acad. Sci. USA 102, 13813–13818 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Obita, T. et al. Structural foundation for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brown, C. et al. Structural and useful characterization of the microtubule interacting and trafficking domains of two oomycete chitin synthases. FEBS J. 283, 3072–3088 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weigel, P. H. & DeAngelis, P. L. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J. Biol. Chem. 282, 36777–36781 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morgan, J. L., Strumillo, J. & Zimmer, J. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493, 181–186 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Purushotham, P., Ho, R. & Zimmer, J. Structure of a catalytically energetic homotrimeric plant cellulose synthase complicated. Science 369, 1089–1094 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morgan, J. L. et al. Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531, 329–334 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maue, L., Meissner, D. & Merzendorfer, H. Purification of an energetic, oligomeric chitin synthase complicated from the midgut of the tobacco hornworm. Insect Biochem. Mol. Biol. 39, 654–659 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sacristan, C. et al. Oligomerization of the chitin synthase Chs3 is monitored on the Golgi and impacts its endocytic recycling. Mol. Microbiol. 90, 252–266 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Ren, Z. et al. Structural foundation for inhibition and regulation of a chitin synthase from Candida albicans. Nat. Struct. Mol. Biol. 29, 653–664 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kamst, E. et al. Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos begins by glycosyl switch to O4 of the reducing-terminal residue. Biochemistry 38, 4045–4052 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Orlean, P. & Funai, D. Priming and elongation of chitin chains: implications for chitin synthase mechanism. Cell Surf. 5, 100017 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morgan, J. L., McNamara, J. T. & Zimmer, J. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat. Struct. Mol. Biol. 21, 489–496 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McManus, J. B., Yang, H., Wilson, L., Kubicki, J. D. & Tien, M. Initiation, elongation, and termination of bacterial cellulose synthesis. ACS Omega 3, 2690–2698 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maloney, F. P. et al. Construction, substrate recognition and initiation of hyaluronan synthase. Nature 604, 195–201 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zeng, J. B., He, Y. S., Li, S. L. & Wang, Y. Z. Chitin whiskers: an summary. Biomacromolecules 13, 1–11 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, X. & Zhu, Okay. Y. Biochemical characterization of chitin synthase exercise and inhibition within the African malaria mosquito, Anopheles gambiae. Insect Sci. 20, 158–166 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lucero, H. A., Kuranda, M. J. & Bulik, D. A. A nonradioactive, excessive throughput assay for chitin synthase exercise. Anal. Biochem. 305, 97–105 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu, C., Huang, X., Cheng, J., Zhu, D. & Zhang, X. Excessive-quality, high-throughput cryo-electron microscopy knowledge assortment through beam tilt and astigmatism-free beam-image shift. J. Struct. Biol. 208, 107396 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, Okay. Gctf: real-time CTF dedication and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheres, S. H. RELION: implementation of a Bayesian strategy to cryo-EM construction dedication. J. Struct. Biol. 180, 519–530 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and growth of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oostenbrink, C., Soares, T. A., van der Vegt, N. F. & van Gunsteren, W. F. Validation of the 53A6 GROMOS drive area. Eur. Biophys. J. 34, 273–284 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bussi, G., Zykova-Timan, T. & Parrinello, M. Isothermal-isobaric molecular dynamics utilizing stochastic velocity rescaling. J. Chem. Phys. 130, 074101 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wolf, M. G., Hoefling, M., Aponte-Santamaria, C., Grubmuller, H. & Groenhof, G. g_membed: Environment friendly insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J. Comput. Chem. 31, 2169–2174 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Miyamoto, S. & Kollman, P. A. Settle: an analytical model of the SHAKE and RATTLE algorithm for inflexible water fashions. J. Comput. Chem. 13, 952–962 (1992).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Khurram Shehzad on No Confidence Last Round
    Asif Baloch on Update No.3
    Khurram on Update No.2
    Mehjabeen asif on Update On Pakistan Iran Border
    Asim Meraj on WhatsApp