Site icon Team JiX

Structural foundation for directional chitin biosynthesis

[ad_1]

  • Moussian, B. Chitin: construction, chemistry and biology. Adv. Exp. Med. Biol. 1142, 5–18 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jaworski, E., Wang, L. & Marco, G. Synthesis of chitin in cell-free extracts of Prodenia eridania. Nature 198, 790 (1963).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhu, Okay. Y., Merzendorfer, H., Zhang, W., Zhang, J. & Muthukrishnan, S. Biosynthesis, turnover, and features of chitin in bugs. Annu. Rev. Entomol. 61, 177–196 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guerriero, G. et al. Chitin synthases from Saprolegnia are concerned in tip development and symbolize a possible goal for anti-oomycete medication. PLoS Pathog. 6, e1001070 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Merzendorfer, H. Chitin synthesis inhibitors: outdated molecules and new developments. Insect Sci. 20, 121–138 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cortes, J. C. G., Curto, M. A., Carvalho, V. S. D., Perez, P. & Ribas, J. C. The fungal cell wall as a goal for the event of recent antifungal therapies. Biotechnol. Adv. 37, 107352 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: constructions, features, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bi, Y., Hubbard, C., Purushotham, P. & Zimmer, J. Insights into the construction and performance of membrane-integrated processive glycosyltransferases. Curr. Opin. Struct. Biol. 34, 78–86 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dorfmueller, H. C., Ferenbach, A. T., Borodkin, V. S. & van Aalten, D. M. A structural and biochemical mannequin of processive chitin synthesis. J. Biol. Chem. 289, 23020–23028 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klinter, S., Bulone, V. & Arvestad, L. Range and evolution of chitin synthases in oomycetes (Straminipila: Oomycota). Mol. Phylogenet. Evol. 139, 106558 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, X., Yang, X., Zheng, X., Bai, M. & Hu, D. Overview on constructions of pesticide targets. Int. J. Mol. Sci. 21, 7144 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dahn, U. et al. Stoffwechselprodukte von mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer hemmstoff der chitinsynthese bei pilzen. Arch. Microbiol. 107, 143–160 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Larwood, D. J. Nikkomycin Z-ready to satisfy the promise? J. Fungi (Basel) 6, 261 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ma, Z. et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a bunch inhibitor. Science 355, 710–714 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, W. et al. A large NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat. Commun. 12, 6263 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng, W. et al. Chitin synthase is concerned in vegetative development, asexual replica and pathogenesis of Phytophthora capsici and Phytophthora sojae. Environ. Microbiol. 21, 4537–4547 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gyore, J. et al. 2-Acylamido analogues of N-acetylglucosamine prime formation of chitin oligosaccharides by yeast chitin synthase 2. J. Biol. Chem. 289, 12835–12841 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ogawa, Y., Kimura, S., Wada, M. & Kuga, S. Crystal evaluation and high-resolution imaging of microfibrillar α-chitin from Phaeocystis. J. Struct. Biol. 171, 111–116 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsurkan, M. V. et al. Progress in chitin analytics. Carbohydr. Polym. 252, 117204 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ogawa, Y., Kimura, S. & Wada, M. Electron diffraction and high-resolution imaging on highly-crystalline β-chitin microfibril. J. Struct. Biol. 176, 83–90 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Noishiki, Y. et al. Alkali-induced conversion of β-chitin to α-chitin. Biomacromolecules 4, 896–899 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goodrich, J. D. & Winter, W. T. α-Chitin nanocrystals ready from shrimp shells and their particular floor space measurement. Biomacromolecules 8, 252–257 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bulone, V., Chanzy, H., Homosexual, L., Girard, V. & Fevre, M. Characterization of chitin and chitin synthase from the cellulosic cell wall fungus Saprolegnia monoica. Exp. Mycol. 16, 8–21 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Gohlke, S., Muthukrishnan, S. & Merzendorfer, H. In vitro and in vivo research on the structural group of Chs3 from Saccharomyces cerevisiae. Int. J. Mol. Sci. 18, 702 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Scott, A. et al. Construction and ESCRT-III protein interactions of the MIT area of human VPS4A. Proc. Natl Acad. Sci. USA 102, 13813–13818 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Obita, T. et al. Structural foundation for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brown, C. et al. Structural and useful characterization of the microtubule interacting and trafficking domains of two oomycete chitin synthases. FEBS J. 283, 3072–3088 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weigel, P. H. & DeAngelis, P. L. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J. Biol. Chem. 282, 36777–36781 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morgan, J. L., Strumillo, J. & Zimmer, J. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493, 181–186 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Purushotham, P., Ho, R. & Zimmer, J. Structure of a catalytically energetic homotrimeric plant cellulose synthase complicated. Science 369, 1089–1094 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morgan, J. L. et al. Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531, 329–334 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maue, L., Meissner, D. & Merzendorfer, H. Purification of an energetic, oligomeric chitin synthase complicated from the midgut of the tobacco hornworm. Insect Biochem. Mol. Biol. 39, 654–659 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sacristan, C. et al. Oligomerization of the chitin synthase Chs3 is monitored on the Golgi and impacts its endocytic recycling. Mol. Microbiol. 90, 252–266 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Ren, Z. et al. Structural foundation for inhibition and regulation of a chitin synthase from Candida albicans. Nat. Struct. Mol. Biol. 29, 653–664 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kamst, E. et al. Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos begins by glycosyl switch to O4 of the reducing-terminal residue. Biochemistry 38, 4045–4052 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Orlean, P. & Funai, D. Priming and elongation of chitin chains: implications for chitin synthase mechanism. Cell Surf. 5, 100017 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morgan, J. L., McNamara, J. T. & Zimmer, J. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat. Struct. Mol. Biol. 21, 489–496 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McManus, J. B., Yang, H., Wilson, L., Kubicki, J. D. & Tien, M. Initiation, elongation, and termination of bacterial cellulose synthesis. ACS Omega 3, 2690–2698 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maloney, F. P. et al. Construction, substrate recognition and initiation of hyaluronan synthase. Nature 604, 195–201 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zeng, J. B., He, Y. S., Li, S. L. & Wang, Y. Z. Chitin whiskers: an summary. Biomacromolecules 13, 1–11 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, X. & Zhu, Okay. Y. Biochemical characterization of chitin synthase exercise and inhibition within the African malaria mosquito, Anopheles gambiae. Insect Sci. 20, 158–166 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lucero, H. A., Kuranda, M. J. & Bulik, D. A. A nonradioactive, excessive throughput assay for chitin synthase exercise. Anal. Biochem. 305, 97–105 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu, C., Huang, X., Cheng, J., Zhu, D. & Zhang, X. Excessive-quality, high-throughput cryo-electron microscopy knowledge assortment through beam tilt and astigmatism-free beam-image shift. J. Struct. Biol. 208, 107396 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, Okay. Gctf: real-time CTF dedication and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheres, S. H. RELION: implementation of a Bayesian strategy to cryo-EM construction dedication. J. Struct. Biol. 180, 519–530 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and growth of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: construction visualization for researchers, educators, and builders. Protein Sci. 30, 70–82 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oostenbrink, C., Soares, T. A., van der Vegt, N. F. & van Gunsteren, W. F. Validation of the 53A6 GROMOS drive area. Eur. Biophys. J. 34, 273–284 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bussi, G., Zykova-Timan, T. & Parrinello, M. Isothermal-isobaric molecular dynamics utilizing stochastic velocity rescaling. J. Chem. Phys. 130, 074101 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wolf, M. G., Hoefling, M., Aponte-Santamaria, C., Grubmuller, H. & Groenhof, G. g_membed: Environment friendly insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J. Comput. Chem. 31, 2169–2174 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Miyamoto, S. & Kollman, P. A. Settle: an analytical model of the SHAKE and RATTLE algorithm for inflexible water fashions. J. Comput. Chem. 13, 952–962 (1992).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    Exit mobile version