Monday, October 3, 2022
HomeNatureThe Anglo-Saxon migration and the formation of the early English gene pool

The Anglo-Saxon migration and the formation of the early English gene pool


  • Fleming, R. The Materials Fall of Roman Britain, 300–525 CE (Univ. Pennsylvania Press, 2021).

  • Hills, C. M. Did the individuals of Spong Hill come from Schleswig-Holstein? Studien zur Sachsenforschung 11, 145–154 (1999).


    Google Scholar
     

  • Hines, J. The Scandinavian Character of Anglian England within the Pre-Viking Interval (Univ. Oxford, 1983).

  • Hines, J. The changing into of the English: id, materials tradition and Language in early Anglo-Saxon England. Anglo Saxon Stud. Archaeol. Hist. 7, 49–59 (1994).


    Google Scholar
     

  • Brunel, S. et al. Historical genomes from present-day France unveil 7,000 years of its demographic historical past. Proc. Natl Acad. Sci. USA 117, 12791–12798 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patterson, N. et al. Giant-scale migration into Britain in the course of the Center to Late Bronze Age. Nature 601, 588–594 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hills, C. M. & Lucy, L. Spong Hill Half IX: Chronology and Synthesis (McDonald Institute for Archaeological Analysis, 2013).

  • Bruns, D. Germanic Equal Arm Brooches of the Migration Interval Vol. 1,113 (Archaeopress, 2003).

  • Suzuki, S. The Quoit Brooch Fashion and Anglo-Saxon Settlement: a Casting and Recasting of Cultural Identification Symbols (Boydell Press, 2000).

  • Hamerow, H. Early Medieval Settlements: The Archaeology of Rural Communities in North-West Europe 400–900 (Oxford Univ. Press, 2020).

  • Hamerow, H. in Migrations and Invasions in Archaeological Clarification Vol. 664 (eds Chapman, J. & Hamerow, H.) 33–44 (Archaeopress, 1997).

  • Martin, T. F. The Cruciform Brooch and Anglo-Saxon England (Boydell & Brewer, 2015).

  • Hines, J. Clasps, Hektespenner, Agraffen: Anglo-Scandinavian Clasps of lessons A–C of the third to Sixth Centuries A.D.: Typology, Diffusion and Perform (Almqvist & Wiksell Worldwide, 1993).

  • Bruce-Mitford, R. A Corpus of Late Celtic Hanging-Bowls with an Account of the Bowls Present in Scandinavia (Oxford Univ. Press, 2005).

  • Scull, C. Additional proof from East Anglia for enamelling on Early Anglo-Saxon metalwork. Anglo Saxon Stud. Archaeol. Hist. 4, 117–122 (1985).


    Google Scholar
     

  • Gelling, M. in Anglo-Saxon Settlements (ed. Hook, D.) 59–76 (Blackwell, 1988).

  • Gelling, M. Signposts to the Previous: Place-names and the Historical past of England (Dent, 1978).

  • Lucy, S. The Early Anglo-Saxon Cemeteries of East Yorkshire: an Evaluation and Reinterpretation (BAR Publishing, 2019).

  • Leeds, E. T. The archaeology of the Anglo-Saxon settlements. Nature 92, 369–369 (1913).


    Google Scholar
     

  • Myres, J. N. L. The English Settlements (Clarendon Press, 1968).

  • Kruse, P. Jutes in Kent? On the Jutish nature of Kent, southern Hampshire and the Isle of Wight. Probleme der Küstenforschung im südlichen Nordseegebiet 31, 243–376 (2007).


    Google Scholar
     

  • Prior, F. Britain AD: a Quest for Arthur, England and the Anglo-Saxons (HarperCollins, 2004).

  • Montgomery, J., Evans, J. A., Powlesland, D. & Roberts, C. A. Continuity or colonization in Anglo-Saxon England? Isotope proof for mobility, subsistence observe, and standing at West Heslerton. Am. J. Phys. Anthropol. 126, 123–138 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Budd, P., Millard, A., Chenery, C., Lucy, S. & Roberts, C. Investigating inhabitants motion by secure isotope evaluation: a report from Britain. Antiquity 78, 127–141 (2004).

    Article 

    Google Scholar
     

  • Hughes, S. S. et al. Anglo-Saxon origins investigated by isotopic evaluation of burials from Berinsfield, Oxfordshire, UK. J. Archaeol. Sci. 42, 81–92 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Schiffels, S. et al. Iron Age and Anglo-Saxon genomes from East England reveal British migration historical past. Nat. Commun. 7, 10408 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scull, C. in Europe Between Late Antiquity and the Center Ages: Latest Archaeological and Historic Analysis in Western and Southern Europe Vol. 617 (eds Bintliffe, J. & Hamerow, H.) 71–83 (British Archaeological Reviews, 1995).

  • Ulmschneider, Ok. in The Oxford Handbook of Anglo-Saxon Archaeology (eds Hamerow, H., Hinton, D. A. & Crawford, S.) 156–171 (Oxford Univ. Press, 2011).

  • Ward-Perkins, B. Why Did the Anglo-Saxons not turn out to be extra British? Engl. Hist. Rev. 115, 513–533 (2000).

    Article 

    Google Scholar
     

  • Coates, R. in Britons in Anglo-Saxon England (ed. Higham, N. J.) 172–191 (Boydell & Brewer, 2007).

  • Tristram, H. in Britons in Anglo-Saxon England (ed. Higham, N. J.) 192–214 (Boydell & Brewer, 2007).

  • Schrijver, P. in Language Contact and the Origins of the Germanic Languages Vol. 13 (ed. Schrijver, P.) 12–93 (Routledge, 2014).

  • Richards, M., Smalley, Ok., Sykes, B. & Hedges, R. Archaeology and genetics: analysing DNA from skeletal stays. World Archaeol. 25, 18–28 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weale, M. E., Weiss, D. A., Jager, R. F., Bradman, N. & Thomas, M. G. Y chromosome proof for Anglo-Saxon mass migration. Mol. Biol. Evol. 19, 1008–1021 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Capelli, C. et al. A Y chromosome census of the British Isles. Curr. Biol. 13, 979–984 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leslie, S. et al. The fine-scale genetic construction of the British inhabitants. Nature 519, 309–314 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martiniano, R. et al. Genomic alerts of migration and continuity in Britain earlier than the Anglo-Saxons. Nat. Commun. 7, 10326 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allentoft, M. E. et al. Inhabitants genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cassidy, L. M. et al. Neolithic and Bronze Age migration to Eire and institution of the insular Atlantic genome. Proc. Natl Acad. Sci. USA 113, 368–373 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Veeramah, Ok. R. et al. Inhabitants genomic evaluation of elongated skulls reveals intensive female-biased immigration in Early Medieval Bavaria. Proc. Natl Acad. Sci. USA 115, 3494–3499 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krzewińska, M. et al. Genomic and strontium isotope variation reveal immigration patterns in a Viking Age city. Curr. Biol. 28, 2730–2738.e10 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • O’Sullivan, N. et al. Historical genome-wide analyses infer kinship construction in an Early Medieval Alemannic graveyard. Sci. Adv. 4, eaao1262 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Margaryan, A. et al. Inhabitants genomics of the Viking world. Nature 585, 390–396 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Worldwide A number of Sclerosis Genetics Consortium et al. Genetic threat and a main function for cell-mediated immune mechanisms in a number of sclerosis. Nature 476, 214–219 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Genome of the Netherlands Consortium. Entire-genome sequence variation, inhabitants construction and demographic historical past of the Dutch inhabitants. Nat. Genet. 46, 818–825 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Genetic Evaluation of Psoriasis Consortium & The Wellcome Belief Case Management Consortium 2 et al. A genome-wide affiliation research identifies new psoriasis susceptibility loci and an interplay between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, Ok. Quick model-based estimation of ancestry in unrelated people. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sayer, D. Early Anglo-Saxon Cemeteries (Manchester Univ. Press, 2020).

  • Lucy, S. in Invisible Individuals and Processes: Writing Gender and Childhood into European Archaeology (eds Moore, J. S. E. & Scott, E.) 150–168 (Leicester Univ. Press, 1997).

  • Amorim, C. E. G. et al. Understanding Sixth-century barbarian social group and migration by way of paleogenomics. Nat. Commun. 9, 3547 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Battey, C. J., Ralph, P. L. & Kern, A. D. Predicting geographic location from genetic variation with deep neural networks. eLife 9, e54507 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Härke, H. Anglo-Saxon immigration and ethnogenesis. Mediev. Archaeol. 55, 1–28 (2011).

    Article 

    Google Scholar
     

  • Hines, J. in Friesische Studien 2 Vol. 12 (eds Faltings, F. V., Walker, A. G. H. & Wilts, O.) 35–62 (Routledge, 1995).

  • Myres, N. M. et al. A serious Y-chromosome haplogroup R1b Holocene period founder impact in Central and Western Europe. Eur. J. Hum. Genet. 19, 95–101 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Busby, G. B. J. et al. The peopling of Europe and the cautionary story of Y chromosome lineage R-M269. Proc. R. Soc. B 279, 884–892 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Haak, W. et al. Large migration from the steppe was a supply for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brugmann, B. in The Tempo of Change: Research in Early-Medieval Chronology (eds Hines, J., Høilund Nielsen, Ok. & Siegmund, F.) 37–64 (Oxbow, 1999).

  • Soulat, J. in Research in Early Anglo-Saxon Artwork and Archaeology: Papers in Honour of Martin Welch (eds Brookes, S., Harrington, S. & Reynolds, A.) 62–71 (British Archaeology Reviews, 2011).

  • Evison, V. I. The Fifth-Century Invasions South of the Thames (Athlone Press, 1965).

  • Higham, N. J. Rome, Britain and the Anglo-Saxons (Seaby, 1992).

  • Thomas, M. G., Stumpf, M. P. H. & Härke, H. Proof for an apartheid-like social construction in early Anglo-Saxon England. Proc. Biol. Sci. 273, 2651–2657 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kootker, L. M. et al. Past isolation: understanding previous human-population variability within the Dutch city of Oldenzaal by way of the origin of its inhabitants and its infrastructural connections. Archaeol. Anthropol. Sci. 11, 755–775 (2019).

    Article 

    Google Scholar
     

  • Pinhasi, R. et al. Optimum historic DNA yields from the inside ear a part of the human petrous bone. PLoS ONE 10, e0129102 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sirak, Ok. A. et al. A minimally-invasive methodology for sampling human petrous bones from the cranial base for historic DNA evaluation. Biotechniques 62, 283–289 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dabney, J. et al. Full mitochondrial genome sequence of a Center Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Korlević, P. et al. Decreasing microbial and human contamination in DNA extractions from historic bones and tooth. Biotechniques 59, 87–93 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of extremely degraded DNA from historic bones, tooth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Damgaard, P. B. et al. Bettering entry to endogenous DNA in historic bones and tooth. Sci. Rep. 5, 11184 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brotherton, P. et al. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun. 4, 1764 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Dulias, Ok. et al. Historical DNA on the fringe of the world: continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proc. Natl Acad. Sci. USA 119, e2108001119 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meyer, M. & Kircher, M. Illumina sequencing library preparation for extremely multiplexed goal seize and sequencing. Chilly Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase therapy for screening of historic DNA. Phil. Trans. R. Soc. B 370, 20130624 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of historic or broken DNA. Nat. Protoc. 8, 737–748 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Peltzer, A. et al. EAGER: environment friendly historic genome reconstruction. Genome Biol. 17, 60 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fu, Q. et al. An early fashionable human from Romania with a latest Neanderthal ancestor. Nature 524, 216–219 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu, Q. et al. DNA evaluation of an early fashionable human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: fast adapter trimming, identification, and skim merging. BMC Res. Notes 9, 88 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. & Durbin, R. Quick and correct quick learn alignment with Burrows–Wheeler remodel. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: quick approximate Bayesian estimates of historic DNA harm parameters. Bioinformatics 29, 1682–1684 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mittnik, A., Wang, C.-C., Svoboda, J. & Krause, J. A molecular method to the sexing of the triple burial on the Higher Paleolithic web site of Dolní Věstonice. PLoS ONE 11, e0163019 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lamnidis, T. C. et al. Historical Fennoscandian genomes reveal origin and unfold of Siberian ancestry in Europe. Nat. Commun. 9, 5018 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: evaluation of subsequent era sequencing information. BMC Bioinformatics 15, 356 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for historic DNA. Genome Biol. 16, 224 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu, Q. et al. A revised timescale for human evolution primarily based on historic mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Skoglund, P. et al. Separating endogenous historic DNA from modern-day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lazaridis, I. et al. Genomic insights into the origin of farming within the historic Close to East. Nature 536, 419–424 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lazaridis, I. et al. Historical human genomes counsel three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Behar, D. M. et al. A ‘Copernican’ reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kearse, M. et al. Geneious Fundamental: an built-in and extendable desktop software program platform for the group and evaluation of sequence information. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification within the period of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kennett, D. J. et al. Archaeogenomic proof reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lipatov, M., Sanjeev, Ok., Patro, R. & Veeramah, Ok. R. Most probability estimation of organic relatedness from low protection sequencing information. Preprint at bioRxiv https://doi.org/10.1101/023374 (2015).

  • Sudmant, P. H. et al. An built-in map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yunusbayev, B. et al. The Caucasus as an uneven semipermeable barrier to historic human migrations. Mol. Biol. Evol. 29, 359–365 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 1000 Genomes Undertaking Consortium et al. A world reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Behar, D. M. et al. The genome-wide construction of the Jewish individuals. Nature 466, 238–242 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kushniarevich, A. et al. Genetic heritage of the Balto-Slavic talking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal information. PLoS ONE 10, e0135820 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pagani, L. et al. Genomic analyses inform on migration occasions in the course of the peopling of Eurasia. Nature 538, 238–242 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kovacevic, L. et al. Standing on the gateway to Europe-the genetic construction of western Balkan populations primarily based on autosomal and haploid markers. PLoS ONE 9, e105090 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Worth, A. L. et al. Lengthy-range LD can confound genome scans in admixed populations. Am. J. Hum. Genet. 83, 132–135; writer reply 135–139 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anderson, C. A. et al. Knowledge high quality management in genetic case–management affiliation research. Nat. Protoc. 5, 1564–1573 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a software set for whole-genome affiliation and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patterson, N., Worth, A. L. & Reich, D. Inhabitants construction and eigenanalysis. PLoS Genet. 2, e190 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Patterson, N. et al. Historical admixture in human historical past. Genetics 192, 1065–1093 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pickrell, J. Ok. & Pritchard, J. Ok. Inference of inhabitants splits and mixtures from genome-wide allele frequency information. PLoS Genet. 8, e1002967 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reich, D. et al. Reconstructing Native American inhabitants historical past. Nature 488, 370–374 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Khurram Shehzad on No Confidence Last Round
    Asif Baloch on Update No.3
    Khurram on Update No.2
    Mehjabeen asif on Update On Pakistan Iran Border
    Asim Meraj on WhatsApp