Site icon Team JiX

The Anglo-Saxon migration and the formation of the early English gene pool

[ad_1]

  • Fleming, R. The Materials Fall of Roman Britain, 300–525 CE (Univ. Pennsylvania Press, 2021).

  • Hills, C. M. Did the individuals of Spong Hill come from Schleswig-Holstein? Studien zur Sachsenforschung 11, 145–154 (1999).


    Google Scholar
     

  • Hines, J. The Scandinavian Character of Anglian England within the Pre-Viking Interval (Univ. Oxford, 1983).

  • Hines, J. The changing into of the English: id, materials tradition and Language in early Anglo-Saxon England. Anglo Saxon Stud. Archaeol. Hist. 7, 49–59 (1994).


    Google Scholar
     

  • Brunel, S. et al. Historical genomes from present-day France unveil 7,000 years of its demographic historical past. Proc. Natl Acad. Sci. USA 117, 12791–12798 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patterson, N. et al. Giant-scale migration into Britain in the course of the Center to Late Bronze Age. Nature 601, 588–594 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hills, C. M. & Lucy, L. Spong Hill Half IX: Chronology and Synthesis (McDonald Institute for Archaeological Analysis, 2013).

  • Bruns, D. Germanic Equal Arm Brooches of the Migration Interval Vol. 1,113 (Archaeopress, 2003).

  • Suzuki, S. The Quoit Brooch Fashion and Anglo-Saxon Settlement: a Casting and Recasting of Cultural Identification Symbols (Boydell Press, 2000).

  • Hamerow, H. Early Medieval Settlements: The Archaeology of Rural Communities in North-West Europe 400–900 (Oxford Univ. Press, 2020).

  • Hamerow, H. in Migrations and Invasions in Archaeological Clarification Vol. 664 (eds Chapman, J. & Hamerow, H.) 33–44 (Archaeopress, 1997).

  • Martin, T. F. The Cruciform Brooch and Anglo-Saxon England (Boydell & Brewer, 2015).

  • Hines, J. Clasps, Hektespenner, Agraffen: Anglo-Scandinavian Clasps of lessons A–C of the third to Sixth Centuries A.D.: Typology, Diffusion and Perform (Almqvist & Wiksell Worldwide, 1993).

  • Bruce-Mitford, R. A Corpus of Late Celtic Hanging-Bowls with an Account of the Bowls Present in Scandinavia (Oxford Univ. Press, 2005).

  • Scull, C. Additional proof from East Anglia for enamelling on Early Anglo-Saxon metalwork. Anglo Saxon Stud. Archaeol. Hist. 4, 117–122 (1985).


    Google Scholar
     

  • Gelling, M. in Anglo-Saxon Settlements (ed. Hook, D.) 59–76 (Blackwell, 1988).

  • Gelling, M. Signposts to the Previous: Place-names and the Historical past of England (Dent, 1978).

  • Lucy, S. The Early Anglo-Saxon Cemeteries of East Yorkshire: an Evaluation and Reinterpretation (BAR Publishing, 2019).

  • Leeds, E. T. The archaeology of the Anglo-Saxon settlements. Nature 92, 369–369 (1913).


    Google Scholar
     

  • Myres, J. N. L. The English Settlements (Clarendon Press, 1968).

  • Kruse, P. Jutes in Kent? On the Jutish nature of Kent, southern Hampshire and the Isle of Wight. Probleme der Küstenforschung im südlichen Nordseegebiet 31, 243–376 (2007).


    Google Scholar
     

  • Prior, F. Britain AD: a Quest for Arthur, England and the Anglo-Saxons (HarperCollins, 2004).

  • Montgomery, J., Evans, J. A., Powlesland, D. & Roberts, C. A. Continuity or colonization in Anglo-Saxon England? Isotope proof for mobility, subsistence observe, and standing at West Heslerton. Am. J. Phys. Anthropol. 126, 123–138 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Budd, P., Millard, A., Chenery, C., Lucy, S. & Roberts, C. Investigating inhabitants motion by secure isotope evaluation: a report from Britain. Antiquity 78, 127–141 (2004).

    Article 

    Google Scholar
     

  • Hughes, S. S. et al. Anglo-Saxon origins investigated by isotopic evaluation of burials from Berinsfield, Oxfordshire, UK. J. Archaeol. Sci. 42, 81–92 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Schiffels, S. et al. Iron Age and Anglo-Saxon genomes from East England reveal British migration historical past. Nat. Commun. 7, 10408 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scull, C. in Europe Between Late Antiquity and the Center Ages: Latest Archaeological and Historic Analysis in Western and Southern Europe Vol. 617 (eds Bintliffe, J. & Hamerow, H.) 71–83 (British Archaeological Reviews, 1995).

  • Ulmschneider, Ok. in The Oxford Handbook of Anglo-Saxon Archaeology (eds Hamerow, H., Hinton, D. A. & Crawford, S.) 156–171 (Oxford Univ. Press, 2011).

  • Ward-Perkins, B. Why Did the Anglo-Saxons not turn out to be extra British? Engl. Hist. Rev. 115, 513–533 (2000).

    Article 

    Google Scholar
     

  • Coates, R. in Britons in Anglo-Saxon England (ed. Higham, N. J.) 172–191 (Boydell & Brewer, 2007).

  • Tristram, H. in Britons in Anglo-Saxon England (ed. Higham, N. J.) 192–214 (Boydell & Brewer, 2007).

  • Schrijver, P. in Language Contact and the Origins of the Germanic Languages Vol. 13 (ed. Schrijver, P.) 12–93 (Routledge, 2014).

  • Richards, M., Smalley, Ok., Sykes, B. & Hedges, R. Archaeology and genetics: analysing DNA from skeletal stays. World Archaeol. 25, 18–28 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weale, M. E., Weiss, D. A., Jager, R. F., Bradman, N. & Thomas, M. G. Y chromosome proof for Anglo-Saxon mass migration. Mol. Biol. Evol. 19, 1008–1021 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Capelli, C. et al. A Y chromosome census of the British Isles. Curr. Biol. 13, 979–984 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leslie, S. et al. The fine-scale genetic construction of the British inhabitants. Nature 519, 309–314 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martiniano, R. et al. Genomic alerts of migration and continuity in Britain earlier than the Anglo-Saxons. Nat. Commun. 7, 10326 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allentoft, M. E. et al. Inhabitants genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cassidy, L. M. et al. Neolithic and Bronze Age migration to Eire and institution of the insular Atlantic genome. Proc. Natl Acad. Sci. USA 113, 368–373 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Veeramah, Ok. R. et al. Inhabitants genomic evaluation of elongated skulls reveals intensive female-biased immigration in Early Medieval Bavaria. Proc. Natl Acad. Sci. USA 115, 3494–3499 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krzewińska, M. et al. Genomic and strontium isotope variation reveal immigration patterns in a Viking Age city. Curr. Biol. 28, 2730–2738.e10 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • O’Sullivan, N. et al. Historical genome-wide analyses infer kinship construction in an Early Medieval Alemannic graveyard. Sci. Adv. 4, eaao1262 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Margaryan, A. et al. Inhabitants genomics of the Viking world. Nature 585, 390–396 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Worldwide A number of Sclerosis Genetics Consortium et al. Genetic threat and a main function for cell-mediated immune mechanisms in a number of sclerosis. Nature 476, 214–219 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Genome of the Netherlands Consortium. Entire-genome sequence variation, inhabitants construction and demographic historical past of the Dutch inhabitants. Nat. Genet. 46, 818–825 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Genetic Evaluation of Psoriasis Consortium & The Wellcome Belief Case Management Consortium 2 et al. A genome-wide affiliation research identifies new psoriasis susceptibility loci and an interplay between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, Ok. Quick model-based estimation of ancestry in unrelated people. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sayer, D. Early Anglo-Saxon Cemeteries (Manchester Univ. Press, 2020).

  • Lucy, S. in Invisible Individuals and Processes: Writing Gender and Childhood into European Archaeology (eds Moore, J. S. E. & Scott, E.) 150–168 (Leicester Univ. Press, 1997).

  • Amorim, C. E. G. et al. Understanding Sixth-century barbarian social group and migration by way of paleogenomics. Nat. Commun. 9, 3547 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Battey, C. J., Ralph, P. L. & Kern, A. D. Predicting geographic location from genetic variation with deep neural networks. eLife 9, e54507 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Härke, H. Anglo-Saxon immigration and ethnogenesis. Mediev. Archaeol. 55, 1–28 (2011).

    Article 

    Google Scholar
     

  • Hines, J. in Friesische Studien 2 Vol. 12 (eds Faltings, F. V., Walker, A. G. H. & Wilts, O.) 35–62 (Routledge, 1995).

  • Myres, N. M. et al. A serious Y-chromosome haplogroup R1b Holocene period founder impact in Central and Western Europe. Eur. J. Hum. Genet. 19, 95–101 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Busby, G. B. J. et al. The peopling of Europe and the cautionary story of Y chromosome lineage R-M269. Proc. R. Soc. B 279, 884–892 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Haak, W. et al. Large migration from the steppe was a supply for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brugmann, B. in The Tempo of Change: Research in Early-Medieval Chronology (eds Hines, J., Høilund Nielsen, Ok. & Siegmund, F.) 37–64 (Oxbow, 1999).

  • Soulat, J. in Research in Early Anglo-Saxon Artwork and Archaeology: Papers in Honour of Martin Welch (eds Brookes, S., Harrington, S. & Reynolds, A.) 62–71 (British Archaeology Reviews, 2011).

  • Evison, V. I. The Fifth-Century Invasions South of the Thames (Athlone Press, 1965).

  • Higham, N. J. Rome, Britain and the Anglo-Saxons (Seaby, 1992).

  • Thomas, M. G., Stumpf, M. P. H. & Härke, H. Proof for an apartheid-like social construction in early Anglo-Saxon England. Proc. Biol. Sci. 273, 2651–2657 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kootker, L. M. et al. Past isolation: understanding previous human-population variability within the Dutch city of Oldenzaal by way of the origin of its inhabitants and its infrastructural connections. Archaeol. Anthropol. Sci. 11, 755–775 (2019).

    Article 

    Google Scholar
     

  • Pinhasi, R. et al. Optimum historic DNA yields from the inside ear a part of the human petrous bone. PLoS ONE 10, e0129102 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sirak, Ok. A. et al. A minimally-invasive methodology for sampling human petrous bones from the cranial base for historic DNA evaluation. Biotechniques 62, 283–289 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dabney, J. et al. Full mitochondrial genome sequence of a Center Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Korlević, P. et al. Decreasing microbial and human contamination in DNA extractions from historic bones and tooth. Biotechniques 59, 87–93 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of extremely degraded DNA from historic bones, tooth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Damgaard, P. B. et al. Bettering entry to endogenous DNA in historic bones and tooth. Sci. Rep. 5, 11184 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brotherton, P. et al. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun. 4, 1764 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Dulias, Ok. et al. Historical DNA on the fringe of the world: continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proc. Natl Acad. Sci. USA 119, e2108001119 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meyer, M. & Kircher, M. Illumina sequencing library preparation for extremely multiplexed goal seize and sequencing. Chilly Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase therapy for screening of historic DNA. Phil. Trans. R. Soc. B 370, 20130624 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of historic or broken DNA. Nat. Protoc. 8, 737–748 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Peltzer, A. et al. EAGER: environment friendly historic genome reconstruction. Genome Biol. 17, 60 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fu, Q. et al. An early fashionable human from Romania with a latest Neanderthal ancestor. Nature 524, 216–219 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu, Q. et al. DNA evaluation of an early fashionable human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: fast adapter trimming, identification, and skim merging. BMC Res. Notes 9, 88 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. & Durbin, R. Quick and correct quick learn alignment with Burrows–Wheeler remodel. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: quick approximate Bayesian estimates of historic DNA harm parameters. Bioinformatics 29, 1682–1684 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mittnik, A., Wang, C.-C., Svoboda, J. & Krause, J. A molecular method to the sexing of the triple burial on the Higher Paleolithic web site of Dolní Věstonice. PLoS ONE 11, e0163019 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lamnidis, T. C. et al. Historical Fennoscandian genomes reveal origin and unfold of Siberian ancestry in Europe. Nat. Commun. 9, 5018 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: evaluation of subsequent era sequencing information. BMC Bioinformatics 15, 356 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for historic DNA. Genome Biol. 16, 224 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fu, Q. et al. A revised timescale for human evolution primarily based on historic mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Skoglund, P. et al. Separating endogenous historic DNA from modern-day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lazaridis, I. et al. Genomic insights into the origin of farming within the historic Close to East. Nature 536, 419–424 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lazaridis, I. et al. Historical human genomes counsel three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Behar, D. M. et al. A ‘Copernican’ reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kearse, M. et al. Geneious Fundamental: an built-in and extendable desktop software program platform for the group and evaluation of sequence information. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification within the period of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kennett, D. J. et al. Archaeogenomic proof reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lipatov, M., Sanjeev, Ok., Patro, R. & Veeramah, Ok. R. Most probability estimation of organic relatedness from low protection sequencing information. Preprint at bioRxiv https://doi.org/10.1101/023374 (2015).

  • Sudmant, P. H. et al. An built-in map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yunusbayev, B. et al. The Caucasus as an uneven semipermeable barrier to historic human migrations. Mol. Biol. Evol. 29, 359–365 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 1000 Genomes Undertaking Consortium et al. A world reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Behar, D. M. et al. The genome-wide construction of the Jewish individuals. Nature 466, 238–242 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kushniarevich, A. et al. Genetic heritage of the Balto-Slavic talking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal information. PLoS ONE 10, e0135820 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pagani, L. et al. Genomic analyses inform on migration occasions in the course of the peopling of Eurasia. Nature 538, 238–242 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kovacevic, L. et al. Standing on the gateway to Europe-the genetic construction of western Balkan populations primarily based on autosomal and haploid markers. PLoS ONE 9, e105090 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Worth, A. L. et al. Lengthy-range LD can confound genome scans in admixed populations. Am. J. Hum. Genet. 83, 132–135; writer reply 135–139 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Anderson, C. A. et al. Knowledge high quality management in genetic case–management affiliation research. Nat. Protoc. 5, 1564–1573 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a software set for whole-genome affiliation and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patterson, N., Worth, A. L. & Reich, D. Inhabitants construction and eigenanalysis. PLoS Genet. 2, e190 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Patterson, N. et al. Historical admixture in human historical past. Genetics 192, 1065–1093 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pickrell, J. Ok. & Pritchard, J. Ok. Inference of inhabitants splits and mixtures from genome-wide allele frequency information. PLoS Genet. 8, e1002967 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reich, D. et al. Reconstructing Native American inhabitants historical past. Nature 488, 370–374 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • [ad_2]

    Exit mobile version