Monday, February 6, 2023
HomeNatureTwo annual cycles of the Pacific chilly tongue below orbital precession

Two annual cycles of the Pacific chilly tongue below orbital precession

[ad_1]

  • Mitchell, T. P. & Wallace, J. M. The annual cycle in equatorial convection and sea-surface temperature. J. Clim. 5, 1140–1156 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Xie, S. P. On the genesis of the equatorial annual cycle. J. Clim. 7, 2008–2013 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Chang, P. The function of the dynamic ocean–environment interactions within the tropical seasonal cycle. J. Clim. 9, 2973–2985 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Li, T. M. & Philander, S. G. H. On the annual cycle of the japanese equatorial Pacific. J. Clim. 9, 2986–2998 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Wang, B. On the annual cycle within the Tropical Japanese Central Pacific. J. Clim. 7, 1926–1942 (1994).

    Article 
    ADS 

    Google Scholar
     

  • United States Nautical Almanac Workplace, United States Naval Observatory, Her Majesty’s Nautical Almanac Workplace and the UK Hydrographic Workplace. The Astronomical Almanac for the 12 months 2019 (United States Authorities Printing Workplace, 2019).

  • Berger, A. & Loutre, M. F. Insolation values for the local weather of the final 10000000 years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Xie, S. P. & Philander, S. G. H. A. Coupled ocean–environment mannequin of relevance to the ITCZ within the Japanese Pacific. Tellus 46, 340–350 (1994).

    Article 

    Google Scholar
     

  • Philander, S. G. H. et al. Why the ITCZ is usually north of the equator. J. Clim. 9, 2958–2972 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Xie, S. P. Westward propagation of latitudinal asymmetry in a coupled ocean–environment mannequin. J. Atmos. Sci. 53, 3236–3250 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Nigam, S. & Chao, Y. Evolution dynamics of tropical ocean–environment annual cycle variability. J. Clim. 9, 3187–3205 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Erb, M. P. et al. Response of the equatorial Pacific seasonal cycle to orbital forcing. J. Clim. 28, 9258–9276 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Luan, Y., Braconnot, P., Yu, Y., Zheng, W. & Marti, O. Early and mid-Holocene local weather within the tropical Pacific: seasonal cycle and interannual variability induced by insolation modifications. Clim. Previous 8, 1093–1108 (2012).

    Article 

    Google Scholar
     

  • Karamperidou, C., Di Nezio, P. N., Timmermann, A., Jin, F. F. & Cobb, Ok. M. The response of ENSO flavors to mid-Holocene local weather: implications for proxy interpretation. Paleoceanography 30, 527–547 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Neelin, J. D. et al. ENSO idea. J. Geophys. Res. 103, 14261–14290 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Battisti, D. S. Dynamics and thermodynamics of a warming occasion in a coupled tropical environment ocean mannequin. J. Atmos. Sci. 45, 2889–2919 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Boos, W. R. & Korty, R. L. Regional vitality price range management of the intertropical convergence zone and utility to mid-Holocene rainfall. Nat. Geosci. 9, 892–897 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sobel, A. H., Nilsson, J. & Polvani, L. M. The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58, 3650–3665 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Chiang, J. C. H. & Friedman, A. R. Extratropical cooling, interhemispheric thermal gradients, and tropical local weather change. Ann. Rev. Earth Planet. Sci. 40, 383–412 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thomson, D. J. The seasons, world temperature, and precession. Science 268, 59–68 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koutavas, A., Demenocal, P. B., Olive, G. C. & Lynch-Stieglitz, J. Mid-Holocene El Nino-Southern Oscillation (ENSO) attenuation revealed by particular person foraminifera in japanese tropical Pacific sediments. Geology 34, 993–996 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cobb, Ok. M. et al. Extremely variable El Nino-Southern Oscillation all through the Holocene. Science 339, 67–70 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carre, M. et al. Holocene historical past of ENSO variance and asymmetry within the japanese tropical Pacific. Science 345, 1045–1048 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Emile-Geay, J. et al. Hyperlinks between tropical Pacific seasonal, interannual and orbital variability throughout the Holocene. Nat. Geosci. 9, 168–173 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thompson, D. M. et al. Tropical Pacific local weather variability over the past 6000 years as recorded in Bainbridge Crater Lake, Galapagos. Paleoceanography 32, 903–922 (2017).

    Article 
    ADS 

    Google Scholar
     

  • White, S. M., Ravelo, A. C. & Polissar, P. J. Dampened El Nino within the Early and Mid-Holocene because of insolation-forced warming/deepening of the thermocline. Geophys. Res. Lett. 45, 316–326 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Koutavas, A. & Joanides, S. El Nino-Southern Oscillation extrema within the Holocene and Final Glacial Most. Paleoceanography https://doi.org/10.1029/2012pa002378 (2012).

  • Thirumalai, Ok., Partin, J. W., Jackson, C. S. & Quinn, T. M. Statistical constraints on El Nino Southern Oscillation reconstructions utilizing particular person foraminifera: a sensitivity evaluation. Paleoceanography 28, 401–412 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, J. et al. Lowered ENSO variability on the LGM revealed by an isotope-enabled Earth system mannequin. Geophys. Res. Lett. 44, 6984–6992 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Battisti, D. S. & Hirst, A. C. Interannual variability in a tropical environment ocean mannequin—affect of the fundamental state, ocean geometry and nonlinearity. J. Atmos. Sci. 46, 1687–1712 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Tziperman, E., Zebiak, S. E. & Cane, M. A. Mechanisms of seasonal–ENSO interplay. J. Atmos. Sci. 54, 61–71 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Cane, M. A. A task for the Tropical Pacific. Science 282, 59–61 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Chiang, J. C. H. The tropics in paleoclimate. Ann. Rev. Earth Planet. Sci. 37, 263–297 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prell, W. L. & Kutzbach, J. E. Monsoon variability over the previous 150,000 years. J. Geophys. Res. 92, 8411–8425 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y. J. et al. Millennial- and orbital-scale modifications within the East Asian monsoon over the previous 224,000 years. Nature 451, 1090–1093 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in Earths orbit—pacemaker of Ice Ages. Science 194, 1121–1132 (1976).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berger, A. Milankovitch idea and local weather. Rev. Geophys. 26, 624–657 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, H. et al. Ice Age terminations. Science 326, 248–252 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabor, C. R. et al. Deciphering precession-driven delta O-18 variability within the South Asian monsoon area. J. Geophys. Res. 123, 5927–5946 (2018).

    Article 

    Google Scholar
     

  • Pawlowicz, R. M_Map: A mapping package deal for MATLAB, model 1.4m (UBC EOAS, 2020); www.eoas.ubc.ca/~wealthy/map.html

  • Wessel, P. & Smith, W. H. F. A worldwide, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Delworth, T. L. et al. GFDL’s CM2 world coupled local weather fashions. Half I: Formulation and simulation traits. J. Clim. 19, 643–674 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Pollard, D. & Reusch, D. B. A calendar conversion methodology for month-to-month imply paleoclimate mannequin output with orbital forcing. J. Geophys. Res. https://doi.org/10.1029/2002jd002126 (2002).

  • Brady, E. et al. The related isotopic water cycle within the Group Earth System Mannequin Model 1. J. Adv. Mannequin. Earth Syst. 11, 2547–2566 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hurrell, J. W. et al. The Group Earth System Mannequin: a framework for collaborative analysis. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Valdes, P. J. et al. The BRIDGE HadCM3 household of local weather fashions: HadCM3@Bristol v1.0. Geosci. Mannequin Dev. 10, 3715–3743 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pope, V. D., Gallani, M. L., Rowntree, P. R. & Stratton, R. A. The influence of recent bodily parametrizations within the Hadley Centre local weather mannequin: HadAM3. Clim. Dynam. 16, 123–146 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, C. et al. The simulation of SST, sea ice extents and ocean warmth transports in a model of the Hadley Centre coupled mannequin with out flux changes. Clim. Dynam. 16, 147–168 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J. & Lourens, L. J. Response of the North African summer season monsoon to precession and obliquity forcings within the EC-Earth GCM. Clim. Dynam. 44, 279–297 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Joussaume, S. & Braconnot, P. Sensitivity of paleoclimate simulation outcomes to season definitions. J. Geophys. Res. 102, 1943–1956 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Curve Becoming Toolbox v.3.6 (Natick, 2020).

  • Gill, A. E. Some easy options for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Thomas, E. E. & Vimont, D. J. Modeling the mechanisms of linear and nonlinear ENSO responses to the Pacific meridional mode. J. Clim. 29, 8745–8761 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lintner, B. R. & Boos, W. R. Utilizing atmospheric vitality transport to quantitatively constrain South Pacific convergence zone shifts throughout ENSO. J. Clim. 32, 1839–1855 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dawson, A. Windspharm: a high-level library for world wind discipline computations utilizing spherical harmonics. J. Open Res. Softw. 4, e31 (2016).

  • Chiang, J. C. H., Vimont, D. J., Nicknish, P. A., Roberts, W. H. G. & Tabor, C. R. Information and Code related to: two annual cycles of the Pacific chilly tongue below orbital precession. Dryad https://doi.org/10.6078/D1VB0G (2022).

  • Erb, M., Broccoli, A. & Raney, B. Idealized single-forcing GCM simulations with GFDL CM2.1. Zenodo https://doi.org/10.5281/zenodo.1194480 (2018).

  • Bosmans, J. Idealized orbital excessive GCM simulations with EC-Earth-2-2. Zenodo https://doi.org/10.5281/zenodo.3268528 (2019).

  • Dee, D. P. et al. The ERA-Interim reanalysis: configuration and efficiency of the info assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article 
    ADS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Verified by MonsterInsights