[ad_1]
Mitchell, T. P. & Wallace, J. M. The annual cycle in equatorial convection and sea-surface temperature. J. Clim. 5, 1140–1156 (1992).
Xie, S. P. On the genesis of the equatorial annual cycle. J. Clim. 7, 2008–2013 (1994).
Chang, P. The function of the dynamic ocean–environment interactions within the tropical seasonal cycle. J. Clim. 9, 2973–2985 (1996).
Li, T. M. & Philander, S. G. H. On the annual cycle of the japanese equatorial Pacific. J. Clim. 9, 2986–2998 (1996).
Wang, B. On the annual cycle within the Tropical Japanese Central Pacific. J. Clim. 7, 1926–1942 (1994).
United States Nautical Almanac Workplace, United States Naval Observatory, Her Majesty’s Nautical Almanac Workplace and the UK Hydrographic Workplace. The Astronomical Almanac for the 12 months 2019 (United States Authorities Printing Workplace, 2019).
Berger, A. & Loutre, M. F. Insolation values for the local weather of the final 10000000 years. Quat. Sci. Rev. 10, 297–317 (1991).
Xie, S. P. & Philander, S. G. H. A. Coupled ocean–environment mannequin of relevance to the ITCZ within the Japanese Pacific. Tellus 46, 340–350 (1994).
Philander, S. G. H. et al. Why the ITCZ is usually north of the equator. J. Clim. 9, 2958–2972 (1996).
Xie, S. P. Westward propagation of latitudinal asymmetry in a coupled ocean–environment mannequin. J. Atmos. Sci. 53, 3236–3250 (1996).
Nigam, S. & Chao, Y. Evolution dynamics of tropical ocean–environment annual cycle variability. J. Clim. 9, 3187–3205 (1996).
Erb, M. P. et al. Response of the equatorial Pacific seasonal cycle to orbital forcing. J. Clim. 28, 9258–9276 (2015).
Luan, Y., Braconnot, P., Yu, Y., Zheng, W. & Marti, O. Early and mid-Holocene local weather within the tropical Pacific: seasonal cycle and interannual variability induced by insolation modifications. Clim. Previous 8, 1093–1108 (2012).
Karamperidou, C., Di Nezio, P. N., Timmermann, A., Jin, F. F. & Cobb, Ok. M. The response of ENSO flavors to mid-Holocene local weather: implications for proxy interpretation. Paleoceanography 30, 527–547 (2015).
Neelin, J. D. et al. ENSO idea. J. Geophys. Res. 103, 14261–14290 (1998).
Battisti, D. S. Dynamics and thermodynamics of a warming occasion in a coupled tropical environment ocean mannequin. J. Atmos. Sci. 45, 2889–2919 (1988).
Boos, W. R. & Korty, R. L. Regional vitality price range management of the intertropical convergence zone and utility to mid-Holocene rainfall. Nat. Geosci. 9, 892–897 (2016).
Sobel, A. H., Nilsson, J. & Polvani, L. M. The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58, 3650–3665 (2001).
Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).
Chiang, J. C. H. & Friedman, A. R. Extratropical cooling, interhemispheric thermal gradients, and tropical local weather change. Ann. Rev. Earth Planet. Sci. 40, 383–412 (2012).
Thomson, D. J. The seasons, world temperature, and precession. Science 268, 59–68 (1995).
Koutavas, A., Demenocal, P. B., Olive, G. C. & Lynch-Stieglitz, J. Mid-Holocene El Nino-Southern Oscillation (ENSO) attenuation revealed by particular person foraminifera in japanese tropical Pacific sediments. Geology 34, 993–996 (2006).
Cobb, Ok. M. et al. Extremely variable El Nino-Southern Oscillation all through the Holocene. Science 339, 67–70 (2013).
Carre, M. et al. Holocene historical past of ENSO variance and asymmetry within the japanese tropical Pacific. Science 345, 1045–1048 (2014).
Emile-Geay, J. et al. Hyperlinks between tropical Pacific seasonal, interannual and orbital variability throughout the Holocene. Nat. Geosci. 9, 168–173 (2016).
Thompson, D. M. et al. Tropical Pacific local weather variability over the past 6000 years as recorded in Bainbridge Crater Lake, Galapagos. Paleoceanography 32, 903–922 (2017).
White, S. M., Ravelo, A. C. & Polissar, P. J. Dampened El Nino within the Early and Mid-Holocene because of insolation-forced warming/deepening of the thermocline. Geophys. Res. Lett. 45, 316–326 (2018).
Koutavas, A. & Joanides, S. El Nino-Southern Oscillation extrema within the Holocene and Final Glacial Most. Paleoceanography https://doi.org/10.1029/2012pa002378 (2012).
Thirumalai, Ok., Partin, J. W., Jackson, C. S. & Quinn, T. M. Statistical constraints on El Nino Southern Oscillation reconstructions utilizing particular person foraminifera: a sensitivity evaluation. Paleoceanography 28, 401–412 (2013).
Zhu, J. et al. Lowered ENSO variability on the LGM revealed by an isotope-enabled Earth system mannequin. Geophys. Res. Lett. 44, 6984–6992 (2017).
Battisti, D. S. & Hirst, A. C. Interannual variability in a tropical environment ocean mannequin—affect of the fundamental state, ocean geometry and nonlinearity. J. Atmos. Sci. 46, 1687–1712 (1989).
Tziperman, E., Zebiak, S. E. & Cane, M. A. Mechanisms of seasonal–ENSO interplay. J. Atmos. Sci. 54, 61–71 (1997).
Cane, M. A. A task for the Tropical Pacific. Science 282, 59–61 (1998).
Chiang, J. C. H. The tropics in paleoclimate. Ann. Rev. Earth Planet. Sci. 37, 263–297 (2009).
Prell, W. L. & Kutzbach, J. E. Monsoon variability over the previous 150,000 years. J. Geophys. Res. 92, 8411–8425 (1987).
Wang, Y. J. et al. Millennial- and orbital-scale modifications within the East Asian monsoon over the previous 224,000 years. Nature 451, 1090–1093 (2008).
Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in Earths orbit—pacemaker of Ice Ages. Science 194, 1121–1132 (1976).
Berger, A. Milankovitch idea and local weather. Rev. Geophys. 26, 624–657 (1988).
Cheng, H. et al. Ice Age terminations. Science 326, 248–252 (2009).
Tabor, C. R. et al. Deciphering precession-driven delta O-18 variability within the South Asian monsoon area. J. Geophys. Res. 123, 5927–5946 (2018).
Pawlowicz, R. M_Map: A mapping package deal for MATLAB, model 1.4m (UBC EOAS, 2020); www.eoas.ubc.ca/~wealthy/map.html
Wessel, P. & Smith, W. H. F. A worldwide, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).
Delworth, T. L. et al. GFDL’s CM2 world coupled local weather fashions. Half I: Formulation and simulation traits. J. Clim. 19, 643–674 (2006).
Pollard, D. & Reusch, D. B. A calendar conversion methodology for month-to-month imply paleoclimate mannequin output with orbital forcing. J. Geophys. Res. https://doi.org/10.1029/2002jd002126 (2002).
Brady, E. et al. The related isotopic water cycle within the Group Earth System Mannequin Model 1. J. Adv. Mannequin. Earth Syst. 11, 2547–2566 (2019).
Hurrell, J. W. et al. The Group Earth System Mannequin: a framework for collaborative analysis. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).
Valdes, P. J. et al. The BRIDGE HadCM3 household of local weather fashions: HadCM3@Bristol v1.0. Geosci. Mannequin Dev. 10, 3715–3743 (2017).
Pope, V. D., Gallani, M. L., Rowntree, P. R. & Stratton, R. A. The influence of recent bodily parametrizations within the Hadley Centre local weather mannequin: HadAM3. Clim. Dynam. 16, 123–146 (2000).
Gordon, C. et al. The simulation of SST, sea ice extents and ocean warmth transports in a model of the Hadley Centre coupled mannequin with out flux changes. Clim. Dynam. 16, 147–168 (2000).
Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J. & Lourens, L. J. Response of the North African summer season monsoon to precession and obliquity forcings within the EC-Earth GCM. Clim. Dynam. 44, 279–297 (2015).
Joussaume, S. & Braconnot, P. Sensitivity of paleoclimate simulation outcomes to season definitions. J. Geophys. Res. 102, 1943–1956 (1997).
Curve Becoming Toolbox v.3.6 (Natick, 2020).
Gill, A. E. Some easy options for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).
Thomas, E. E. & Vimont, D. J. Modeling the mechanisms of linear and nonlinear ENSO responses to the Pacific meridional mode. J. Clim. 29, 8745–8761 (2016).
Lintner, B. R. & Boos, W. R. Utilizing atmospheric vitality transport to quantitatively constrain South Pacific convergence zone shifts throughout ENSO. J. Clim. 32, 1839–1855 (2019).
Dawson, A. Windspharm: a high-level library for world wind discipline computations utilizing spherical harmonics. J. Open Res. Softw. 4, e31 (2016).
Chiang, J. C. H., Vimont, D. J., Nicknish, P. A., Roberts, W. H. G. & Tabor, C. R. Information and Code related to: two annual cycles of the Pacific chilly tongue below orbital precession. Dryad https://doi.org/10.6078/D1VB0G (2022).
Erb, M., Broccoli, A. & Raney, B. Idealized single-forcing GCM simulations with GFDL CM2.1. Zenodo https://doi.org/10.5281/zenodo.1194480 (2018).
Bosmans, J. Idealized orbital excessive GCM simulations with EC-Earth-2-2. Zenodo https://doi.org/10.5281/zenodo.3268528 (2019).
Dee, D. P. et al. The ERA-Interim reanalysis: configuration and efficiency of the info assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
[ad_2]