Tuesday, September 27, 2022
HomeNatureUnified rhombic lip origins of group 3 and group 4 medulloblastoma

Unified rhombic lip origins of group 3 and group 4 medulloblastoma


  • Northcott, P. A. et al. Medulloblastoma. Nat. Rev. Dis. Primers 5, 11 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Hovestadt, V. et al. Medulloblastomics revisited: organic and medical insights from hundreds of sufferers. Nat. Rev. Most cancers 20, 42–56 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haldipur, P., Millen, Okay. J. & Aldinger, Okay. A. Human cerebellar growth and transcriptomics: implications for neurodevelopmental issues. Annu. Rev. Neurosci. 45, 515–531 (2022).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jones, D. T. W. et al. Molecular traits and therapeutic vulnerabilities throughout paediatric stable tumours. Nat. Rev. Most cancers 19, 420–438 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hovestadt, V. et al. Resolving medulloblastoma mobile structure by single-cell genomics. Nature 572, 74–79 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vladoiu, M. C. et al. Childhood cerebellar tumours mirror conserved fetal transcriptional applications. Nature 572, 67–73 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haldipur, P. et al. Spatiotemporal growth of major progenitor zones within the creating human cerebellum. Science 366, 454–460 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aldinger, Okay. A. et al. Spatial and cell sort transcriptional panorama of human cerebellar growth. Nat. Neurosci. 24, 1163–1175 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jessa, S. et al. Stalled developmental applications on the root of pediatric mind tumors. Nat. Genet. 51, 1702–1713 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Consalez, G. G., Goldowitz, D., Casoni, F. & Hawkes, R. Origins, growth, and compartmentation of the granule cells of the cerebellum. Entrance. Neural Circuits 14, 611841 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Englund, C. et al. Unipolar brush cells of the cerebellum are produced within the rhombic lip and migrate via creating white matter. J. Neurosci. 26, 9184–9195 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hagan, N. & Zervas, M. Wnt1 expression temporally allocates higher rhombic lip progenitors and defines their terminal cell destiny within the cerebellum. Mol. Cell. Neurosci. 49, 217–229 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McDonough, A. et al. Unipolar (dendritic) brush cells are morphologically advanced and require Tbr2 for differentiation and migration. Entrance. Neurosci. 14, 598548 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Furukawa, T., Morrow, E. M. & Cepko, C. L. Crx, a novel otx-like homeobox gene, reveals photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kozareva, V. et al. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell varieties. Nature 598, 214–219 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nayler, S., Agarwal, D., Curion, F., Bowden, R. & Becker, E. B. E. Excessive-resolution transcriptional panorama of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci. Rep. 11, 12959 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cho, Y. J. et al. Integrative genomic evaluation of medulloblastoma identifies a molecular subgroup that drives poor medical end result. J. Clin. Oncol. 29, 1424–1430 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Garancher, A. et al. NRL and CRX outline photoreceptor id and reveal subgroup-specific dependencies in medulloblastoma. Most cancers Cell 33, 435–449 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kool, M. et al. Built-in genomics identifies 5 medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological options. PLoS One 3, e3088 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Northcott, P. A. et al. Medulloblastoma includes 4 distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Northcott, P. A. et al. The entire-genome panorama of medulloblastoma subtypes. Nature 547, 311–317 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sharma, T. et al. Second-generation molecular subgrouping of medulloblastoma: a world meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 138, 309–326 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin, C. Y. et al. Lively medulloblastoma enhancers reveal subgroup-specific mobile origins. Nature 530, 57–62 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bunt, J. et al. OTX2 straight prompts cell cycle genes and inhibits differentiation in medulloblastoma cells. Int. J. Most cancers 131, E21–E32 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Candy-Cordero, E. A. & Biegel, J. A. The genomic panorama of pediatric cancers: implications for analysis and therapy. Science 363, 1170–1175 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grobner, S. N. et al. The panorama of genomic alterations throughout childhood cancers. Nature 555, 321–327 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Northcott, P. A. et al. Enhancer hijacking prompts GFI1 household oncogenes in medulloblastoma. Nature 511, 428–434 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goodrich, L. V., Milenkovic, L., Higgins, Okay. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kawauchi, D. et al. A mouse mannequin of probably the most aggressive subgroup of human medulloblastoma. Most cancers Cell 21, 168–180 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pei, Y. et al. An animal mannequin of MYC-driven medulloblastoma. Most cancers Cell 21, 155–167 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Swartling, F. J. et al. Distinct neural stem cell populations give rise to disparate mind tumors in response to N-MYC. Most cancers Cell 21, 601–613 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perreault, S. et al. MRI surrogates for molecular subgroups of medulloblastoma. Am. J. Neuroradiol. 35, 1263–1269 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wefers, A. Okay. et al. Subgroup-specific localization of human medulloblastoma based mostly on pre-operative MRI. Acta Neuropathol. 127, 931–933 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Gajjar, A. et al. Outcomes by medical and molecular options in youngsters with medulloblastoma handled with risk-adapted remedy: outcomes of a world section III trial (SJMB03). J. Clin. Oncol. 39, 822–835 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robinson, G. W. et al. Threat-adapted remedy for younger youngsters with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, section 2 trial. Lancet Oncol. 19, 768–784 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patay, Z. et al. MR imaging traits of Wingless-type-subgroup pediatric medulloblastoma. Am. J. Neuroradiol. 36, 2386–2393 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aldape, Okay. et al. Challenges to curing major mind tumours. Nat. Rev. Clin. Oncol. 16, 509–520 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gajjar, A. J. & Robinson, G. W. Medulloblastoma—translating discoveries from the bench to the bedside. Nat. Rev. Clin. Oncol. 11, 714–722 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cavalli, F. M. G. et al. Intertumoral heterogeneity inside medulloblastoma subgroups. Most cancers Cell 31, 737–754 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Poli, V. et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat. Commun. 9, 1024 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Friedmann-Morvinski, D. et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338, 1080–1084 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morfouace, M. et al. Pemetrexed and gemcitabine as mixture remedy for the therapy of Group 3 medulloblastoma. Most cancers Cell 25, 516–529 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pei, Y. et al. HDAC and PI3K antagonists cooperate to inhibit development of MYC-driven medulloblastoma. Most cancers Cell 29, 311–323 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tao, R. et al. MYC drives group 3 medulloblastoma via transformation of Sox2+ astrocyte progenitor cells. Most cancers Res. 79, 1967–1980 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kawauchi, D. et al. Novel MYC-driven medulloblastoma fashions from a number of embryonic cerebellar cells. Oncogene 36, 5231–5242 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Behesti, H., Kocabas, A., Buchholz, D. E., Carroll, T. S. & Hatten, M. E. Altered temporal sequence of transcriptional regulators within the era of human cerebellar granule cells. eLife 10, e67074 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Polanski, Okay. et al. BBKNN: quick batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states via dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stuart, T. et al. Complete integration of single-cell knowledge. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression knowledge evaluation. Genome Biol. 19, 15 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, X., Park, J., Susztak, Okay., Zhang, N. R. & Li, M. Bulk tissue cell sort deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based strategy for deciphering genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Riemondy, Okay. A. et al. Neoplastic and immune single cell transcriptomics outline subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro-oncology 24, 273–286 (2021).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation evaluation for microarray and RNA-seq knowledge. BMC Bioinformatics 14, 7 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hao, Y. et al. Built-in evaluation of multimodal single-cell knowledge. Cell 184, 3573–3587 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Korsunsky, I. et al. Quick, delicate and correct integration of single-cell knowledge with Concord. Nat. Strategies 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for quick and delicate epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome place. Nat. Strategies 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a way for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.21–21.29.29 (2015).

    Article 

    Google Scholar
     

  • Corces, M. R. et al. An improved ATAC-seq protocol reduces background and allows interrogation of frozen tissues. Nat. Strategies 14, 959–962 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. Aligning sequence reads, clone sequences and meeting contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a versatile platform for exploring deep-sequencing knowledge. Nucleic Acids Res. 42, W187–W191 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vo, B. T. et al. Mouse medulloblastoma pushed by CRISPR activation of mobile Myc. Sci Rep. 8, 8733 (2018).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee, C. et al. Lsd1 as a therapeutic goal in Gfi1-activated medulloblastoma. Nat. Commun. 10, 332 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments

    Khurram Shehzad on No Confidence Last Round
    Asif Baloch on Update No.3
    Khurram on Update No.2
    Mehjabeen asif on Update On Pakistan Iran Border
    Asim Meraj on WhatsApp