Saturday, March 2, 2024
HomeNatureUnified rhombic lip origins of group 3 and group 4 medulloblastoma

Unified rhombic lip origins of group 3 and group 4 medulloblastoma

[ad_1]

  • Northcott, P. A. et al. Medulloblastoma. Nat. Rev. Dis. Primers 5, 11 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Hovestadt, V. et al. Medulloblastomics revisited: organic and medical insights from hundreds of sufferers. Nat. Rev. Most cancers 20, 42–56 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haldipur, P., Millen, Okay. J. & Aldinger, Okay. A. Human cerebellar growth and transcriptomics: implications for neurodevelopmental issues. Annu. Rev. Neurosci. 45, 515–531 (2022).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jones, D. T. W. et al. Molecular traits and therapeutic vulnerabilities throughout paediatric stable tumours. Nat. Rev. Most cancers 19, 420–438 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hovestadt, V. et al. Resolving medulloblastoma mobile structure by single-cell genomics. Nature 572, 74–79 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vladoiu, M. C. et al. Childhood cerebellar tumours mirror conserved fetal transcriptional applications. Nature 572, 67–73 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haldipur, P. et al. Spatiotemporal growth of major progenitor zones within the creating human cerebellum. Science 366, 454–460 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aldinger, Okay. A. et al. Spatial and cell sort transcriptional panorama of human cerebellar growth. Nat. Neurosci. 24, 1163–1175 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jessa, S. et al. Stalled developmental applications on the root of pediatric mind tumors. Nat. Genet. 51, 1702–1713 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Consalez, G. G., Goldowitz, D., Casoni, F. & Hawkes, R. Origins, growth, and compartmentation of the granule cells of the cerebellum. Entrance. Neural Circuits 14, 611841 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Englund, C. et al. Unipolar brush cells of the cerebellum are produced within the rhombic lip and migrate via creating white matter. J. Neurosci. 26, 9184–9195 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hagan, N. & Zervas, M. Wnt1 expression temporally allocates higher rhombic lip progenitors and defines their terminal cell destiny within the cerebellum. Mol. Cell. Neurosci. 49, 217–229 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McDonough, A. et al. Unipolar (dendritic) brush cells are morphologically advanced and require Tbr2 for differentiation and migration. Entrance. Neurosci. 14, 598548 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Furukawa, T., Morrow, E. M. & Cepko, C. L. Crx, a novel otx-like homeobox gene, reveals photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kozareva, V. et al. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell varieties. Nature 598, 214–219 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nayler, S., Agarwal, D., Curion, F., Bowden, R. & Becker, E. B. E. Excessive-resolution transcriptional panorama of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci. Rep. 11, 12959 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cho, Y. J. et al. Integrative genomic evaluation of medulloblastoma identifies a molecular subgroup that drives poor medical end result. J. Clin. Oncol. 29, 1424–1430 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Garancher, A. et al. NRL and CRX outline photoreceptor id and reveal subgroup-specific dependencies in medulloblastoma. Most cancers Cell 33, 435–449 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kool, M. et al. Built-in genomics identifies 5 medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological options. PLoS One 3, e3088 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Northcott, P. A. et al. Medulloblastoma includes 4 distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Northcott, P. A. et al. The entire-genome panorama of medulloblastoma subtypes. Nature 547, 311–317 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sharma, T. et al. Second-generation molecular subgrouping of medulloblastoma: a world meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 138, 309–326 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin, C. Y. et al. Lively medulloblastoma enhancers reveal subgroup-specific mobile origins. Nature 530, 57–62 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bunt, J. et al. OTX2 straight prompts cell cycle genes and inhibits differentiation in medulloblastoma cells. Int. J. Most cancers 131, E21–E32 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Candy-Cordero, E. A. & Biegel, J. A. The genomic panorama of pediatric cancers: implications for analysis and therapy. Science 363, 1170–1175 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grobner, S. N. et al. The panorama of genomic alterations throughout childhood cancers. Nature 555, 321–327 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Northcott, P. A. et al. Enhancer hijacking prompts GFI1 household oncogenes in medulloblastoma. Nature 511, 428–434 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goodrich, L. V., Milenkovic, L., Higgins, Okay. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kawauchi, D. et al. A mouse mannequin of probably the most aggressive subgroup of human medulloblastoma. Most cancers Cell 21, 168–180 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pei, Y. et al. An animal mannequin of MYC-driven medulloblastoma. Most cancers Cell 21, 155–167 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Swartling, F. J. et al. Distinct neural stem cell populations give rise to disparate mind tumors in response to N-MYC. Most cancers Cell 21, 601–613 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perreault, S. et al. MRI surrogates for molecular subgroups of medulloblastoma. Am. J. Neuroradiol. 35, 1263–1269 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wefers, A. Okay. et al. Subgroup-specific localization of human medulloblastoma based mostly on pre-operative MRI. Acta Neuropathol. 127, 931–933 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Gajjar, A. et al. Outcomes by medical and molecular options in youngsters with medulloblastoma handled with risk-adapted remedy: outcomes of a world section III trial (SJMB03). J. Clin. Oncol. 39, 822–835 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robinson, G. W. et al. Threat-adapted remedy for younger youngsters with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, section 2 trial. Lancet Oncol. 19, 768–784 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patay, Z. et al. MR imaging traits of Wingless-type-subgroup pediatric medulloblastoma. Am. J. Neuroradiol. 36, 2386–2393 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aldape, Okay. et al. Challenges to curing major mind tumours. Nat. Rev. Clin. Oncol. 16, 509–520 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gajjar, A. J. & Robinson, G. W. Medulloblastoma—translating discoveries from the bench to the bedside. Nat. Rev. Clin. Oncol. 11, 714–722 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cavalli, F. M. G. et al. Intertumoral heterogeneity inside medulloblastoma subgroups. Most cancers Cell 31, 737–754 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Poli, V. et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat. Commun. 9, 1024 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Friedmann-Morvinski, D. et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338, 1080–1084 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morfouace, M. et al. Pemetrexed and gemcitabine as mixture remedy for the therapy of Group 3 medulloblastoma. Most cancers Cell 25, 516–529 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pei, Y. et al. HDAC and PI3K antagonists cooperate to inhibit development of MYC-driven medulloblastoma. Most cancers Cell 29, 311–323 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tao, R. et al. MYC drives group 3 medulloblastoma via transformation of Sox2+ astrocyte progenitor cells. Most cancers Res. 79, 1967–1980 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kawauchi, D. et al. Novel MYC-driven medulloblastoma fashions from a number of embryonic cerebellar cells. Oncogene 36, 5231–5242 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Behesti, H., Kocabas, A., Buchholz, D. E., Carroll, T. S. & Hatten, M. E. Altered temporal sequence of transcriptional regulators within the era of human cerebellar granule cells. eLife 10, e67074 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Polanski, Okay. et al. BBKNN: quick batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states via dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stuart, T. et al. Complete integration of single-cell knowledge. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression knowledge evaluation. Genome Biol. 19, 15 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, X., Park, J., Susztak, Okay., Zhang, N. R. & Li, M. Bulk tissue cell sort deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based strategy for deciphering genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Riemondy, Okay. A. et al. Neoplastic and immune single cell transcriptomics outline subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro-oncology 24, 273–286 (2021).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation evaluation for microarray and RNA-seq knowledge. BMC Bioinformatics 14, 7 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hao, Y. et al. Built-in evaluation of multimodal single-cell knowledge. Cell 184, 3573–3587 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Korsunsky, I. et al. Quick, delicate and correct integration of single-cell knowledge with Concord. Nat. Strategies 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for quick and delicate epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome place. Nat. Strategies 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a way for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.21–21.29.29 (2015).

    Article 

    Google Scholar
     

  • Corces, M. R. et al. An improved ATAC-seq protocol reduces background and allows interrogation of frozen tissues. Nat. Strategies 14, 959–962 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. Aligning sequence reads, clone sequences and meeting contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a versatile platform for exploring deep-sequencing knowledge. Nucleic Acids Res. 42, W187–W191 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vo, B. T. et al. Mouse medulloblastoma pushed by CRISPR activation of mobile Myc. Sci Rep. 8, 8733 (2018).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee, C. et al. Lsd1 as a therapeutic goal in Gfi1-activated medulloblastoma. Nat. Commun. 10, 332 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    Most Popular

    Recent Comments